Created
August 17, 2022 16:44
-
-
Save charleslparker/57778a1ffde2cf660fa741162c1eb399 to your computer and use it in GitHub Desktop.
Practical Tensorflow Test For GPU
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
URL = "https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip" | |
def run_gpu_test(use_cuda): | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
if not use_cuda: | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
import tensorflow as tf | |
path_to_zip = tf.keras.utils.get_file("cats_and_dogs.zip", origin=URL, extract=True) | |
PATH = os.path.join(os.path.dirname(path_to_zip), "cats_and_dogs_filtered") | |
train_dir = os.path.join(PATH, "train") | |
valid_dir = os.path.join(PATH, "validation") | |
BATCH_SIZE = 32 | |
IMG_SIZE = (160, 160) | |
train_dataset = tf.keras.utils.image_dataset_from_directory( | |
train_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE | |
) | |
validation_dataset = tf.keras.utils.image_dataset_from_directory( | |
valid_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE | |
) | |
val_batches = tf.data.experimental.cardinality(validation_dataset) | |
test_dataset = validation_dataset.take(val_batches // 5) | |
validation_dataset = validation_dataset.skip(val_batches // 5) | |
AUTOTUNE = tf.data.AUTOTUNE | |
train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE) | |
validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE) | |
test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE) | |
data_augmentation = tf.keras.Sequential( | |
[ | |
tf.keras.layers.RandomFlip("horizontal"), | |
tf.keras.layers.RandomRotation(0.2), | |
] | |
) | |
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input | |
rescale = tf.keras.layers.Rescaling(1.0 / 127.5, offset=-1) | |
# Create the base model from the pre-trained model MobileNet V2 | |
IMG_SHAPE = IMG_SIZE + (3,) | |
base_model = tf.keras.applications.MobileNetV2( | |
input_shape=IMG_SHAPE, include_top=False, weights="imagenet" | |
) | |
image_batch, label_batch = next(iter(train_dataset)) | |
feature_batch = base_model(image_batch) | |
base_model.trainable = False | |
global_average_layer = tf.keras.layers.GlobalAveragePooling2D() | |
feature_batch_average = global_average_layer(feature_batch) | |
prediction_layer = tf.keras.layers.Dense(1) | |
prediction_batch = prediction_layer(feature_batch_average) | |
inputs = tf.keras.Input(shape=(160, 160, 3)) | |
x = data_augmentation(inputs) | |
x = preprocess_input(x) | |
x = base_model(x, training=False) | |
x = global_average_layer(x) | |
x = tf.keras.layers.Dropout(0.2)(x) | |
outputs = prediction_layer(x) | |
model = tf.keras.Model(inputs, outputs) | |
base_learning_rate = 0.0001 | |
model.compile( | |
optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate), | |
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | |
metrics=["accuracy"], | |
) | |
history = model.fit( | |
train_dataset, verbose=2, epochs=32, validation_data=validation_dataset | |
) | |
def main(): | |
gpu = False | |
if len(sys.argv) != 2 or sys.argv[1].lower() not in ["gpu", "cpu"]: | |
print("Usage: run_gpu_test gpu|cpu") | |
exit(1) | |
elif sys.argv[1].lower() == "gpu": | |
gpu = True | |
elif sys.argv[1].lower() == "cpu": | |
gpu = False | |
else: | |
raise ValueError("Something wrong with argument parsing") | |
run_gpu_test(gpu) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment