Created
September 2, 2013 18:35
-
-
Save charlespunk/6415888 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Given a binary tree, determine if it is a valid binary search tree (BST). | |
Assume a BST is defined as follows: | |
The left subtree of a node contains only nodes with keys less than the node's key. | |
The right subtree of a node contains only nodes with keys greater than the node's key. | |
Both the left and right subtrees must also be binary search trees. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Definition for binary tree | |
* public class TreeNode { | |
* int val; | |
* TreeNode left; | |
* TreeNode right; | |
* TreeNode(int x) { val = x; } | |
* } | |
*/ | |
public class Solution { | |
public boolean isValidBST(TreeNode root) { | |
// Start typing your Java solution below | |
// DO NOT write main() function | |
return isValidBST(root, Integer.MIN_VALUE, Integer.MAX_VALUE); | |
} | |
public boolean isValidBST(TreeNode root, int min, int max){ | |
if(root == null) return true; | |
if(root.val >= max || root.val <= min) return false; | |
return isValidBST(root.left, min, root.val) && isValidBST(root.right, root.val, max); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment