Skip to content

Instantly share code, notes, and snippets.

@charlie2951
Created June 19, 2022 10:24
Show Gist options
  • Save charlie2951/58bd3e090681d5011a456b0f5b5575b5 to your computer and use it in GitHub Desktop.
Save charlie2951/58bd3e090681d5011a456b0f5b5575b5 to your computer and use it in GitHub Desktop.
from pylab import logistic_regression as lm
def csvread(file_name): # function for reading csv file
f = open(file_name, 'r')
w = []
tmp = []
for each in f:
w.append(each)
# print (each)
# print(w)
for i in range(len(w)):
data = w[i].split(",")
tmp.append(data)
# print(data)
file_data = transpose([[float(y) for y in x] for x in tmp])
# file_data = [[float(y) for y in x] for x in tmp]
return file_data
####### Test function ###########################
raw_data = csvread('diabetes_pima_test.csv')
scaled_data = [lm.normalize(raw_data[i]) for i in range(len(raw_data[:8]))]
#
xtest = scaled_data
ytest = raw_data[8]
W = [0.28817001,1.04158761,-0.20889697, 0.0914167, -0.1110515, 0.68152683, 0.29103829,0.25853476]
B = -0.83505327
ypred_test = lm.predict_class(lm.evaluate_pred(W,xtest,B))
lm.classification_report(ytest, ypred_test)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment