Skip to content

Instantly share code, notes, and snippets.

View charliememory's full-sized avatar

Liqian Ma charliememory

View GitHub Profile
@zollinger
zollinger / getcolor.py
Last active November 6, 2024 08:18
Simple way to get dominant colors from an image in Python
from PIL import Image, ImageDraw
import argparse
import sys
def get_colors(image_file, numcolors=10, resize=150):
# Resize image to speed up processing
img = Image.open(image_file)
img = img.copy()
img.thumbnail((resize, resize))
@blackfalcon
blackfalcon / git-feature-workflow.md
Last active November 5, 2024 19:53
Git basics - a general workflow

Git-workflow vs feature branching

When working with Git, there are two prevailing workflows are Git workflow and feature branches. IMHO, being more of a subscriber to continuous integration, I feel that the feature branch workflow is better suited, and the focus of this article.

If you are new to Git and Git-workflows, I suggest reading the atlassian.com Git Workflow article in addition to this as there is more detail there than presented here.

I admit, using Bash in the command line with the standard configuration leaves a bit to be desired when it comes to awareness of state. A tool that I suggest using follows these instructions on setting up GIT Bash autocompletion. This tool will assist you to better visualize the state of a branc

@amroamroamro
amroamroamro / README.md
Last active August 12, 2024 14:12
[Python] Fitting plane/surface to a set of data points

Python version of the MATLAB code in this Stack Overflow post: https://stackoverflow.com/a/18648210/97160

The example shows how to determine the best-fit plane/surface (1st or higher order polynomial) over a set of three-dimensional points.

Implemented in Python + NumPy + SciPy + matplotlib.

quadratic_surface

@frnsys
frnsys / 2d_to_3d.py
Created May 6, 2016 02:05
take a 2d numpy array of category labels and turn it into a 3d one-hot numpy array
import numpy as np
# the 2d array of our samples,
# each component is a category label
a = np.array([[1,2,3],[4,5,6]])
# the 3d array that will be the one-hot representation
# a.max() + 1 is the number of labels we have
b = np.zeros((a.shape[0], a.shape[1], a.max() + 1))
@shagunsodhani
shagunsodhani / CurriculumLearning.md
Created May 8, 2016 17:14
Notes for Curriculum Learning paper

Curriculum Learning

Introduction

  • Curriculum Learning - When training machine learning models, start with easier subtasks and gradually increase the difficulty level of the tasks.
  • Motivation comes from the observation that humans and animals seem to learn better when trained with a curriculum like a strategy.
  • Link to the paper.

Contributions of the paper

@oeway
oeway / imageUtils.py
Last active May 8, 2024 14:21
Improved image transform functions for dense predictions (for pytorch, keras etc.)
import numpy as np
import scipy
import scipy.ndimage
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
import collections
from PIL import Image
import numbers
__author__ = "Wei OUYANG"
@melgor
melgor / linknet_tf.py
Created August 10, 2017 10:26
LinkNet implemenation in TensorFlow
import tensorflow as tf
from tensorflow.contrib.layers.python.layers import initializers
slim = tf.contrib.slim
'''
============================================================================
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
============================================================================
Based on the paper: https://arxiv.org/pdf/1707.03718.pdf
'''
@peteflorence
peteflorence / pytorch_bilinear_interpolation.md
Last active June 30, 2024 01:26
Bilinear interpolation in PyTorch, and benchmarking vs. numpy

Here's a simple implementation of bilinear interpolation on tensors using PyTorch.

I wrote this up since I ended up learning a lot about options for interpolation in both the numpy and PyTorch ecosystems. More generally than just interpolation, too, it's also a nice case study in how PyTorch magically can put very numpy-like code on the GPU (and by the way, do autodiff for you too).

For interpolation in PyTorch, this open issue calls for more interpolation features. There is now a nn.functional.grid_sample() feature but at least at first this didn't look like what I needed (but we'll come back to this later).

In particular I wanted to take an image, W x H x C, and sample it many times at different random locations. Note also that this is different than upsampling which exhaustively samples and also doesn't give us fle

@Tushar-N
Tushar-N / hook_activations.py
Created August 3, 2018 00:06
Pytorch code to save activations for specific layers over an entire dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tmodels
from functools import partial
import collections
# dummy data: 10 batches of images with batch size 16
dataset = [torch.rand(16,3,224,224).cuda() for _ in range(10)]
@sbarratt
sbarratt / torch_jacobian.py
Created May 9, 2019 19:40
Get the jacobian of a vector-valued function that takes batch inputs, in pytorch.
def get_jacobian(net, x, noutputs):
x = x.squeeze()
n = x.size()[0]
x = x.repeat(noutputs, 1)
x.requires_grad_(True)
y = net(x)
y.backward(torch.eye(noutputs))
return x.grad.data