Created
September 26, 2023 19:24
-
-
Save charmoniumQ/0f04ef83cb687f49edb1e1cb3910c182 to your computer and use it in GitHub Desktop.
Partially pooled linear regression when x[0] == 0 for all instances where x[1] == "specific-class"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pathlib | |
import datetime | |
import pymc | |
import arviz | |
import runner | |
random_seed = 0 | |
cache = pathlib.Path(".cache") | |
df = runner.get_results() | |
with pymc.Model(coords={ | |
"data": df.index, | |
"workload": df.workload.cat.categories, | |
"collector": df.collector.cat.categories, | |
}) as model: | |
workload_idx = pymc.Data("workload_idx", df.workload.cat.codes, dims="data", mutable=False) | |
collector_idx = pymc.Data("collector_idx", df.collector.cat.codes, dims="data", mutable=False) | |
pooled_workload_runtime = pymc.Exponential("pooled_workload_runtime", 1/50) | |
pooled_workload_runtime_stddev = pymc.Exponential("workload_runtime_var", 1/1) | |
workload_runtime = pymc.Normal( | |
"workload_runtime", | |
mu=pooled_workload_runtime, | |
sigma=pooled_workload_runtime_stddev, | |
dims="workload", | |
) | |
pooled_collector_overhead_per_op = pymc.Exponential("pooled_collector_overhead_per_op", 1/1e-4) | |
pooled_collector_overhead_per_op_stddev = pymc.Exponential("pooled_collector_overhead_per_op_var", 1/1e-5) | |
collector_overhead_per_op = pymc.Normal( | |
"collector_overhead_per_op", | |
mu=pooled_collector_overhead_per_op, | |
sigma=pooled_collector_overhead_per_op_stddev, | |
dims="collector", | |
) | |
est_runtime = pymc.Deterministic( | |
"est_runtime", | |
workload_runtime[workload_idx] + df.n_ops.values * collector_overhead_per_op[collector_idx], | |
dims="data", | |
) | |
runtime_std = pymc.Exponential("runtime_std", 1/1e-1) | |
runtime = pymc.Normal("runtime", mu=est_runtime, sigma=runtime_std, observed=df.walltime, dims="data") | |
graph = pymc.model_to_graphviz(model) | |
graph.render(outfile="output/model.png") | |
cache_file = cache / "prior.hdf5" | |
if cache_file.exists(): | |
idata = arviz.from_netcdf(cache_file) | |
else: | |
with model: | |
idata = pymc.sample_prior_predictive( | |
random_seed=random_seed, | |
) | |
axes = arviz.plot_ppc(idata, var_names="runtime", group="prior") | |
axes.figure.savefig("output/prior_runtime.png") | |
cache_file = cache / "trace.hdf5" | |
if cache_file.exists(): | |
idata = arviz.from_netcdf(cache_file) | |
else: | |
with model: | |
idata = pymc.sample( | |
random_seed=random_seed, | |
progressbar=True, | |
) | |
arviz.to_netcdf(idata, cache_file) | |
# check convergence diagnostics | |
assert all(arviz.rhat(idata) < 1.03) | |
axes = arviz.plot_trace(idata) | |
axes.ravel()[0].figure.savefig("output/trace.png") | |
axes = arviz.plot_posterior(idata, var_names=["pooled_workload_runtime", "pooled_collector_overhead_per_op", "runtime_std"]) | |
axes.ravel()[0].figure.savefig("output/global_posteriors.png") | |
axes = arviz.plot_forest(idata, var_names="workload_runtime") | |
axes.ravel()[0].figure.savefig("output/workload_posteriors.png") | |
axes = arviz.plot_forest(idata, var_names="collector_overhead_per_op") | |
axes.ravel()[0].figure.savefig("output/collector_posteriors.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment