Last active
April 29, 2023 05:54
-
-
Save chaudharyachint08/d9e5d0e6c0b00af618d774ea09b822c4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sudo apt-get upgrade -y | |
sudo apt-get update -y | |
sudo apt-get install gcc g++ make cmake htop iotop tree dkms wget git zip unzip -y | |
# Installing Alpa (https://alpa-projects.github.io/install.html) | |
# CUDA 11.4 and cuDNN 8.2.0 required | |
sudo dnf install gcc gcc-c++ make -y | |
sudo dnf install wget git zip unzip -y | |
# https://linuxconfig.org/error-unable-to-find-the-kernel-source-tree-for-the-currently-running-kernel-centos-rhel | |
sudo dnf install kernel-headers kernel-devel -y | |
sudo dnf install elfutils-libelf-devel pkg-config zlib -y | |
# if kernel-headers are not matching existing kernel | |
sudo dnf distro-sync -y | |
# Installing latest Nvidia driver | |
wget https://us.download.nvidia.com/XFree86/Linux-x86_64/515.57/NVIDIA-Linux-x86_64-515.57.run | |
sudo reboot | |
sudo sh NVIDIA-Linux-x86_64-515.57.run | |
# Installing required Cuda version | |
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run | |
sudo sh cuda_11.3.0_465.19.01_linux.run | |
# Following https://alpa-projects.github.io/install.html | |
export PATH=$PATH:/usr/local/cuda-11.3/bin | |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64 | |
# cuDNN download (https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html) | |
# https://developer.nvidia.com/rdp/cudnn-archive | |
wget https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/libcudnn8-8.2.0.53-1.cuda11.3.x86_64.rpm | |
wget https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/libcudnn8-devel-8.2.0.53-1.cuda11.3.x86_64.rpm | |
sudo rpm -i libcudnn8-8.2.0.53-1.cuda11.3.x86_64.rpm | |
sudo rpm -i libcudnn8-devel-8.2.0.53-1.cuda11.3.x86_64.rpm | |
sudo dnf clean all | |
sudo dnf install libcudnn8-8.2.0.53-1.cuda11.3.x86_64.rpm libcudnn8-devel-8.2.0.53-1.cuda11.3.x86_64.rpm | |
# Installing Anaconda | |
wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh | |
chmod 777 Anaconda3-2022.05-Linux-x86_64.sh | |
./Anaconda3-2022.05-Linux-x86_64.sh | |
sudo reboot | |
export PATH=$PATH:/usr/local/cuda-11.3/bin | |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64 | |
conda update --all --yes | |
conda remove -n alpa --all --yes | |
conda create -n alpa python=3.9 --yes | |
conda activate alpa | |
# sudo apt install coinor-cbc | |
conda install -c conda-forge coincbc --yes | |
pip3 install cupy-cuda113 | |
python3 -c "from cupy.cuda import nccl" | |
# If above does gives any output | |
python -m cupyx.tools.install_library --library nccl --cuda 11.3 | |
# Alpa installation | |
pip3 install alpa | |
# Below resulting now in an error, Wheels removed from alpa.ai/wheels.html | |
pip3 install jaxlib==0.3.5+cuda113.cudnn820 -f https://alpa-projects.github.io/wheels.html | |
# pip3 install https://github.com/alpa-projects/alpa/releases/download/v0.1.7/jaxlib-0.3.5%2Bcuda113.cudnn820-cp39-none-manylinux2010_x86_64.whl | |
# Checking installation | |
ray start --head | |
python3 -m alpa.test_install | |
# Serving OPT Models (https://alpa.ai/tutorials/opt_serving.html#requirements) | |
pip3 install transformers flask cython omegaconf | |
# Install torch corresponding to your CUDA version, e.g., for CUDA 11.3: | |
pip3 install --no-cache-dir torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 | |
# git clone [email protected]:alpa-projects/alpa.git # --recursive (Recusrive need not be used here) | |
git clone https://github.com/alpa-projects/alpa.git | |
cd alpa/examples | |
pip3 install -e . | |
# Downloading Alpa compatible weights for early testing | |
pip3 install gdown | |
# 30B https://drive.google.com/u/0/uc?id=1_MBcgwTqHFboV0JkGWR03AOHusrxcHlu | |
# Benchmark generation code (test if things are running ok) | |
cd $HOME/OPT/alpa/examples/opt_serving/benchmark | |
# Torch based 125M diagnosis | |
cd opt_serving/benchmark/ | |
python3 benchmark_text_gen.py --model facebook/opt-125m --debug | |
# Ray based 125M diagnosis | |
python3 benchmark_text_gen.py --model jax/opt-125m --path /home/achint_chaudhary/OPT/meta_alpa_weights --debug | |
# Start ray on the node | |
ray start --head | |
# python3 benchmark_text_gen.py --model alpa/opt-2.7b --path /home/achint_chaudhary/OPT/meta_alpa_weights --debug | |
python3 benchmark_text_gen.py --model alpa/opt-30b --path /home/achint_chaudhary/OPT/custom_alpa_weights/30B/ --debug | |
python3 benchmark_text_gen.py --model alpa/opt-66b --path /home/achint_chaudhary/OPT/custom_alpa_weights/66B/ --debug | |
# Downloading and pre-processing OPT-66B model | |
# 30B weigts json file (https://huggingface.co/facebook/opt-30b/blob/main/pytorch_model.bin.index.json) | |
# 66B weigts json file (https://huggingface.co/facebook/opt-66b/blob/main/pytorch_model.bin.index.json) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment