Created
October 5, 2015 19:10
-
-
Save cheesinglee/c9edd44cf75cb749b6fc to your computer and use it in GitHub Desktop.
Scripts for correlations blog post
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from __future__ import print_function | |
from scipy.stats import pearsonr,spearmanr | |
""" | |
Edward Tufte uses this example from Anscombe to show 4 datasets of x | |
and y that have the same mean, standard deviation, and regression | |
line, but which are qualitatively different. | |
matplotlib fun for a rainy day | |
""" | |
from pylab import * | |
x = array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) | |
y1 = array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) | |
y2 = array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) | |
y3 = array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) | |
x4 = array([8,8,8,8,8,8,8,19,8,8,8]) | |
y4 = array([6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89]) | |
def fit(x): | |
return 3+0.5*x | |
xfit = array( [amin(x), amax(x) ] ) | |
close('all') | |
subplot(221) | |
plot(x,y1,'ks', xfit, fit(xfit), 'r-', lw=2) | |
axis([2,20,2,14]) | |
setp(gca(), xticklabels=[], yticks=(4,8,12), xticks=(0,10,20)) | |
text(3,12, 'I', fontsize=20) | |
text(3,11, r'$r = %0.5f$' % pearsonr(x,y1)[0],fontsize=14) | |
text(3,10, r'$\rho = %0.5f$' % spearmanr(x,y1)[0],fontsize=14) | |
subplot(222) | |
plot(x,y2,'ks', xfit, fit(xfit), 'r-', lw=2) | |
axis([2,20,2,14]) | |
setp(gca(), xticklabels=[], yticks=(4,8,12), yticklabels=[], xticks=(0,10,20)) | |
text(3,12, 'II', fontsize=20) | |
text(3,11, r'$r = %0.5f$' % pearsonr(x,y2)[0],fontsize=14) | |
text(3,10, r'$\rho = %0.5f$' % spearmanr(x,y2)[0],fontsize=14) | |
subplot(223) | |
plot(x,y3,'ks', xfit, fit(xfit), 'r-', lw=2) | |
axis([2,20,2,14]) | |
text(3,12, 'III', fontsize=20) | |
setp(gca(), yticks=(4,8,12), xticks=(0,10,20)) | |
text(3,11, r'$r = %0.5f$' % pearsonr(x,y3)[0],fontsize=14) | |
text(3,10, r'$\rho = %0.5f$' % spearmanr(x,y3)[0],fontsize=14) | |
subplot(224) | |
xfit = array([amin(x4),amax(x4)]) | |
plot(x4,y4,'ks', xfit, fit(xfit), 'r-', lw=2) | |
axis([2,20,2,14]) | |
setp(gca(), yticklabels=[], yticks=(4,8,12), xticks=(0,10,20)) | |
text(3,12, 'IV', fontsize=20) | |
text(3,11, r'$r = %0.5f$' % pearsonr(x4,y4)[0],fontsize=14) | |
text(3,10, r'$\rho = %0.5f$' % spearmanr(x4,y4)[0],fontsize=14) | |
#verify the stats | |
pairs = (x,y1), (x,y2), (x,y3), (x4,y4) | |
for x,y in pairs: | |
print ('mean=%1.2f, std=%1.2f, r=%1.2f'%(mean(y), std(y), corrcoef(x,y)[0][1])) | |
show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Spyder Editor | |
This is a temporary script file. | |
""" | |
from numpy import * | |
from scipy.stats import pearsonr, spearmanr, linregress | |
from matplotlib import pyplot | |
def regress_and_plot(x,y,xlabel,ylabel): | |
pyplot.figure() | |
pyplot.cla() | |
slope, intercept, r_value, p_value, std_err = linregress(x,y) | |
x1 = min(x) | |
x2 = max(x) | |
y1 = slope*x1 + intercept | |
y2 = slope*x2 + intercept | |
x_ann = (x1+x2)/2 | |
y_ann = (y1+y2)/2 | |
pyplot.plot(x,y,'o') | |
pyplot.plot([x1,x2],[y1,y2]) | |
pyplot.annotate('r = %f' % r_value, | |
xy=(x_ann,y_ann), | |
xytext= (x_ann+1, y_ann - 5000), | |
xycoords='data') | |
pyplot.xlabel(xlabel) | |
pyplot.ylabel(ylabel) | |
pyplot.savefig(xlabel+'_vs_'+ylabel+'.png') | |
def loan_amount(years): | |
P = random.randn()*3000 + 35000 | |
r = (0.1 + random.randn()*0.01)/12 | |
N = random.uniform(120,180) | |
c = r*P/(1 -(1+r)**-N) | |
N = 12*years | |
return (P*(1+r)**N - (((1+r)**N-1)/r) * c) | |
N = 50 | |
age = floor(random.uniform(25,66,N)) | |
age.sort() | |
salary = [a*1000 + 20000 + random.randn()*a*150 for a in age] | |
debt = [floor(30000*exp((20-a)/5) + random.randn()*a*0) for a in age] | |
debt = [max(loan_amount(a-22),0) for a in age] | |
shoe_size = floor(2*(10 + random.randn(N)))/2 | |
print(pearsonr(age,debt)) | |
print(spearmanr(age,debt)) | |
pyplot.close() | |
regress_and_plot(age,salary,'Age','Salary') | |
regress_and_plot(age,debt,'Age','Student Loan Debt') | |
regress_and_plot(shoe_size,salary,'Shoe Size','Salary') | |
pyplot.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment