Last active
March 21, 2022 16:26
-
-
Save cheind/1af7d7eb395845c58375e9c1db35a8b1 to your computer and use it in GitHub Desktop.
Blending of motion parabolas
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import dataclasses | |
@dataclasses.dataclass | |
class MotionEstimate: | |
coeffs: np.ndarray # 3x1 | |
t0: float | |
degree: int = dataclasses.field(init=False) | |
def __post_init__(self): | |
self.degree = len(self.coeffs) - 1 | |
def __call__(self, t: np.ndarray): | |
T = np.vander(t - self.t0, self.degree + 1) # Nx3 | |
return (T @ self.coeffs).reshape(-1) | |
def at(self, t: float): | |
t = t - self.t0 | |
return np.dot(self._v(t), self.coeffs) | |
def dx_at(self, t: float): | |
t = t - self.t0 | |
return np.dot(self._vprime(t), self.coeffs[:-1]) | |
def _v(self, t: float): | |
return np.array([t ** i for i in reversed(range(self.degree + 1))]) | |
def _vprime(self, t: float): | |
return np.array([i * t ** (i - 1) for i in reversed(range(1, self.degree + 1))]) | |
def blend( | |
m1: MotionEstimate, m2: MotionEstimate, tnow: float, h: float | |
) -> MotionEstimate: | |
A = np.zeros((4, 4)) | |
b = np.zeros(4) | |
# Position at beginning (tnow) should match | |
A[0, 0] = 0 | |
A[0, 1] = 0 | |
A[0, 2] = 0 | |
A[0, 3] = 1 | |
b[0] = m1.at(tnow) | |
# Position at end of horizon should match | |
A[1, 0] = h ** 3 | |
A[1, 1] = h ** 2 | |
A[1, 2] = h | |
A[1, 3] = 1 | |
b[1] = m2.at(tnow + h) | |
# at beginning and end | |
A[2, 0] = 0 | |
A[2, 1] = 0 | |
A[2, 2] = 1 | |
A[2, 3] = 0 | |
b[2] = m1.dx_at(tnow) | |
A[3, 0] = 3 * h ** 2 | |
A[3, 1] = 2 * h | |
A[3, 2] = 1 | |
A[3, 3] = 0 | |
b[3] = m2.dx_at(tnow + h) | |
coeffs = np.linalg.solve(A, b) | |
return MotionEstimate(coeffs, tnow) | |
class BlendedMotionEstimate: | |
def __init__( | |
self, m1: MotionEstimate, m2: MotionEstimate, tnow: float, h: float | |
) -> None: | |
self.b = blend(m1, m2, tnow, h) | |
self.m1 = m1 | |
self.m2 = m2 | |
self.h = h | |
self.tnow = tnow | |
self.t0 = self.b.t0 | |
self.degree = self.b.degree | |
def __call__(self, t: np.ndarray): | |
x = self.b(t) | |
mask = t < self.b.t0 | |
x[mask] = self.m1(t[mask]) | |
mask = t > self.tnow + self.h | |
x[mask] = self.m2(t[mask]) | |
return x | |
def at(self, t: float): | |
return self._estimator(t).at(t) | |
def dx_at(self, t: float): | |
return self._estimator(t).dx_at(t) | |
def _estimator(self, t: float) -> "MotionEstimate": | |
if t < self.b.t0: | |
return self.m1 | |
elif t > self.tnow + self.h: | |
return self.m2 | |
else: | |
return self.b | |
def main(): | |
m1 = MotionEstimate(coeffs=[-0.8, 1.0, 0.5], t0=0) | |
m2 = MotionEstimate(coeffs=[0, 3.0, 5.0], t0=1.0) | |
m3 = MotionEstimate(coeffs=[1.2, 5.0, 7.0], t0=3.0) | |
tnow = 2.5 | |
h = 1.0 | |
mb1 = BlendedMotionEstimate(m1, m2, tnow, h) | |
tnow = 3.5 | |
h = 1.0 | |
mb2 = BlendedMotionEstimate(mb1, m3, tnow, h) | |
print(mb2) | |
t = np.linspace(0, 10, 100) | |
fig, ax = plt.subplots() | |
ax.plot(t[t >= m1.t0], m1(t[t >= m1.t0]), label="m1") | |
ax.plot(t[t >= m2.t0], m2(t[t >= m2.t0]), label="m2") | |
ax.plot(t[t >= m3.t0], m3(t[t >= m3.t0]), label="m3") | |
ax.plot(t[t >= mb1.t0], mb1(t[t >= mb1.t0]), label="b1") | |
ax.plot(t[t >= mb2.t0], mb2(t[t >= mb2.t0]), label="b2") | |
ax.axvline(tnow, linestyle="--") | |
ax.axvline(tnow + h, linestyle="--") | |
plt.legend() | |
plt.show() | |
pass | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment