Skip to content

Instantly share code, notes, and snippets.

View cheind's full-sized avatar

Christoph Heindl cheind

View GitHub Profile
@cheind
cheind / hmm_train_tf.py
Last active December 5, 2022 07:20
HMM training based on gradient descent (Tensorflow version)
__author__ = 'Christoph Heindl'
__copyright__ = 'Copyright 2017'
__license__ = 'BSD'
"""Trains a HMM based on gradient descent optimization.
The parameters (theta) of the model are transition and
emission probabilities, as well as the initial state probabilities.
Given a start solution, the negative log likelihood of data given the
@Tushar-N
Tushar-N / pad_packed_demo.py
Last active October 27, 2024 15:17
How to use pad_packed_sequence in pytorch<1.1.0
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
seqs = ['gigantic_string','tiny_str','medium_str']
# make <pad> idx 0
vocab = ['<pad>'] + sorted(set(''.join(seqs)))
# make model