Created
December 19, 2022 11:14
-
-
Save chenyaofo/78615a25f4bef43344e538fde22e9cbc to your computer and use it in GitHub Desktop.
Question about TBR.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torchvision.models import resnet50 | |
import types | |
import copy | |
def tbr_bn_forward_impl(self: nn.BatchNorm2d, x: torch.Tensor): | |
# print("x.shape", x.shape) | |
batch_mean = x.mean(dim=(0, 2, 3), keepdim=True) | |
batch_var = x.std(dim=(0, 2, 3), keepdim=True, unbiased=True) + self.eps | |
if self.running_mean is None: | |
print("replace") | |
self.running_mean, self.running_var = batch_mean.clone().detach(), batch_var.clone().detach() | |
else: | |
print("no-replace") | |
self.running_mean, self.running_var = self.running_mean.view(1, -1, 1, 1), self.running_var.view(1, -1, 1, 1) | |
r = batch_var.detach() / self.running_var | |
d = (batch_mean.detach() - self.running_mean) / self.running_var | |
# import ipdb; ipdb.set_trace() | |
x = ((x - batch_mean) / batch_var) * r + d | |
# x = (x - self.running_mean) / self.running_var | |
self.running_mean += self.momentum * (batch_mean.detach() - self.running_mean) | |
self.running_var += self.momentum * (batch_var.detach() - self.running_var) | |
x = self.weight.view(1, -1, 1, 1) * x + self.bias.view(1, -1, 1, 1) | |
return x | |
def normal_bn_forward_impl(self: nn.BatchNorm2d, x: torch.Tensor): | |
x = ((x - self.running_mean.view(1, -1, 1, 1)) / torch.sqrt(self.running_var.view(1, -1, 1, 1))+self.eps) | |
x = self.weight.view(1, -1, 1, 1) * x + self.bias.view(1, -1, 1, 1) | |
return x | |
model = resnet50(pretrained=True) | |
bn = model.bn1 | |
print(bn.weight) | |
bn1 = copy.deepcopy(bn) | |
x = torch.rand(16,64,32,32) | |
bn.eval() | |
with torch.no_grad(): | |
y = bn(x) | |
bn1.forward = types.MethodType(tbr_bn_forward_impl, bn1) | |
bn1.eval() | |
with torch.no_grad(): | |
y1 = bn1(x) | |
print(torch.max(torch.abs(y-y1))) | |
print(torch.mean(torch.abs(y-y1))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment