Created
September 7, 2023 11:11
-
-
Save chenyaofo/a8578931e4e3b4c83152652c4d1264a2 to your computer and use it in GitHub Desktop.
serialize transforms into files.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.package as package | |
import torch | |
import torchvision.transforms as T | |
def get_train_transforms(crop_size, mean, std, is_training): | |
pipelines = [] | |
if is_training: | |
pipelines.append(T.RandomResizedCrop(crop_size)) | |
pipelines.append(T.RandomHorizontalFlip()) | |
else: | |
pipelines.append(T.Resize(int(crop_size/7*8))) | |
pipelines.append(T.CenterCrop(crop_size)) | |
pipelines.append(T.ToTensor()) | |
pipelines.append(T.Normalize(mean=mean, std=std)) | |
return T.Compose(pipelines) | |
pre_processing = get_train_transforms(224, [0.5, 0.5, 0.5], [1, 1, 1], False) | |
with package.PackageExporter("pre_processing.pt.package") as exporter: | |
exporter.intern("codebase.**") | |
exporter.intern("torchvision.**") | |
exporter.extern("numpy.**") | |
exporter.extern("PIL.**") | |
exporter.save_pickle("pre_processing", "transform.pkl", get_train_transforms) | |
importer = package.PackageImporter("pre_processing.pt.package") | |
f = importer.load_pickle("pre_processing", "transform.pkl") | |
pre_processing_pkl = f(224, [0.5, 0.5, 0.5], [1, 1, 1], False) | |
from PIL import Image | |
x = Image.open("img.png").convert("RGB") | |
y1 = pre_processing(x) | |
y2 = pre_processing_pkl(x) | |
print(torch.allclose(y1,y2)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment