Skip to content

Instantly share code, notes, and snippets.

@chenyaofo
Last active November 6, 2022 14:21
Show Gist options
  • Save chenyaofo/ffaec7aae68506462fdff83a9474e967 to your computer and use it in GitHub Desktop.
Save chenyaofo/ffaec7aae68506462fdff83a9474e967 to your computer and use it in GitHub Desktop.
Train ResNet50+Layernorm
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import models.Res as Resnet
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data',
metavar='DIR',
default='/dockerdata/imagenet',
help='path to dataset')
parser.add_argument('-a',
'--arch',
metavar='ARCH',
default='resnet50',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j',
'--workers',
default=8,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs',
default=100, #90
type=int,
metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b',
'--batch-size',
default=256, #1024
type=int,
metavar='N',
help='mini-batch size (default: 3200), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr',
'--learning-rate',
default=0.1, #0.4
type=float,
metavar='LR',
help='initial learning rate',
dest='lr')
parser.add_argument('--momentum',
default=0.9,
type=float,
metavar='M',
help='momentum')
parser.add_argument('--local_rank',
default=-1,
type=int,
help='node rank for distributed training')
parser.add_argument('--wd',
'--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p',
'--print-freq',
default=10,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('-e',
'--evaluate',
dest='evaluate',
action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained',
dest='pretrained',
action='store_true',
help='use pre-trained model')
parser.add_argument('--seed',
default=None,
type=int,
help='seed for initializing training. ')
class LayerNorm2d(nn.LayerNorm):
""" LayerNorm for channels of '2D' spatial NCHW tensors """
def __init__(self, num_channels, eps=1e-6, affine=True):
super().__init__(num_channels, eps=eps, elementwise_affine=affine)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
x = x.permute(0, 3, 1, 2)
return x
def ln_helper(planes):
# return nn.GroupNorm(32, planes) # 16 is the number of group norms
# return nn.InstanceNorm2d(planes, affine=True)
return LayerNorm2d(planes)
def reduce_mean(tensor, nprocs):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= nprocs
return rt
def main():
args = parser.parse_args()
args.nprocs = torch.cuda.device_count()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
main_worker(args.local_rank, args.nprocs, args)
def main_worker(local_rank, nprocs, args):
best_acc1 = .0
dist.init_process_group(backend='nccl')
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
# model = models.__dict__[args.arch]()
model = Resnet.__dict__[args.arch](pretrained=False, norm_layer=ln_helper)
print(model)
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / nprocs)
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[local_rank])
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(local_rank)
optimizer = torch.optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=2,
pin_memory=True,
sampler=train_sampler)
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=2,
pin_memory=True,
sampler=val_sampler)
if args.evaluate:
validate(val_loader, model, criterion, local_rank, args)
return
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, local_rank,
args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, local_rank, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if args.local_rank == 0:
save_checkpoint(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.module.state_dict(),
'best_acc1': best_acc1,
},
is_best,
filename="/apdcephfs/private_huberyniu/cli_pretrained_models/my_trained_ln_resnets/resnet50/checkpoint.pth.tar")
# filename="/apdcephfs/private_huberyniu/cli_pretrained_models/my_trained_gn_resnets/resnet50-v3/checkpoint.pth.tar"
def train(train_loader, model, criterion, optimizer, epoch, local_rank, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs)
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader, model, criterion, local_rank, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs)
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1,
top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, '/apdcephfs/private_huberyniu/cli_pretrained_models/my_trained_ln_resnets/resnet50/model_best.pth.tar')
# '/apdcephfs/private_huberyniu/cli_pretrained_models/my_trained_gn_resnets/resnet50-v3/model_best.pth.tar'
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment