Created
January 25, 2017 11:06
-
-
Save chetkhatri/f75c2b743e6cb2d7066188687448c5a1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/usr/local/hive/ | |
$SPARK_HOME/bin/spark-shell --packages it.nerdammer.bigdata:spark-hbase-connector_2.10:1.0.3 --conf spark.hbase.host=127.0.0.1 | |
/* | |
@Author: Chetan Khatri | |
Description: This Scala script has written for HBase to Hive module, which reads table from HBase and dump it out to Hive | |
*/ | |
import it.nerdammer.spark.hbase._ | |
import org.apache.spark.sql.Row | |
import org.apache.spark.sql.types.StructType | |
import org.apache.spark.sql.types.StructField | |
import org.apache.spark.sql.types.StringType | |
import org.apache.spark.sql.SparkSession | |
// Read HBase Table | |
val hBaseRDD = sc.hbaseTable[(Option[String], Option[String], Option[String], Option[String], Option[String])]("university").select("stid", "name","subject","grade","city").inColumnFamily("emp") | |
// Iterate HBaseRDD and generate RDD[Row] | |
val rowRDD = hBaseRDD.map(i => Row(i._1.get,i._2.get,i._3.get,i._4.get,i._5.get)) | |
// Create sqlContext for createDataFrame method | |
val sqlContext = new org.apache.spark.sql.SQLContext(sc) | |
// Create Schema Structure | |
object empSchema { | |
val stid = StructField("stid", StringType) | |
val name = StructField("name", StringType) | |
val subject = StructField("subject", StringType) | |
val grade = StructField("grade", StringType) | |
val city = StructField("city", StringType) | |
val struct = StructType(Array(stid, name, subject, grade, city)) | |
} | |
import sqlContext.implicits._ | |
// Create DataFrame with rowRDD and Schema structure | |
val stdDf = sqlContext.createDataFrame(rowRDD,empSchema.struct); | |
// Importing Hive | |
import org.apache.spark.sql.hive | |
// Enable Hive with Hive warehouse in SparkSession | |
val spark = SparkSession.builder().appName("Spark Hive Example").config("spark.sql.warehouse.dir", "/usr/local/hive/warehouse").enableHiveSupport().getOrCreate() | |
// Importing spark implicits and sql package | |
import spark.implicits._ | |
import spark.sql | |
// Saving Dataframe to Hive Table Successfully. | |
stdDf.write.mode("append").saveAsTable("employee") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment