Created
August 28, 2021 08:08
-
-
Save chiehpower/c3ce59cbf62d45310f1015386428853b to your computer and use it in GitHub Desktop.
A simple code for computing Global Average Precision
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Source code from : https://github.com/yisaienkov/evaluations/blob/master/evaluations/kaggle_2020/global_average_precision.py | |
from typing import Dict, Tuple, Any | |
import pandas as pd | |
def colorstr(*input): | |
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) | |
colors = { | |
'blue': '\033[34m', | |
'end': '\033[0m', | |
'bold': '\033[1m'} | |
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
def global_average_precision_score( | |
y_true: Dict[Any, Any], | |
y_pred: Dict[Any, Tuple[Any, float]] | |
) -> float: | |
indexes = list(y_pred.keys()) | |
indexes.sort( | |
key=lambda x: -y_pred[x][1], | |
) | |
queries_with_target = len([i for i in y_true.values() if i is not None]) | |
correct_predictions = 0 | |
total_score = 0. | |
for i, k in enumerate(indexes, 1): | |
relevance_of_prediction_i = 0 | |
if y_true[k] == y_pred[k][0]: | |
correct_predictions += 1 | |
relevance_of_prediction_i = 1 | |
precision_at_rank_i = correct_predictions / i | |
total_score += precision_at_rank_i * relevance_of_prediction_i | |
return 1 / queries_with_target * total_score | |
if __name__=='__main__': | |
y_true = { | |
'id_001': 123, | |
'id_002': None, | |
'id_003': 999, | |
'id_004': 123, | |
'id_005': 999, | |
'id_006': 888, | |
'id_007': 666, | |
'id_008': 666, | |
'id_009': None, | |
'id_010': 666, | |
} | |
ytrue = pd.DataFrame(y_true, index=[0]).T | |
ytrue.columns = ['Class ID'] | |
prefix = colorstr('GroundTruth:') | |
print("{}:\n{}\n".format(prefix, ytrue)) | |
y_pred = { | |
'id_001': (123, 0.15), | |
'id_002': (123, 0.10), | |
'id_003': (999, 0.30), | |
'id_005': (999, 0.40), | |
'id_007': (555, 0.60), | |
'id_008': (666, 0.70), | |
'id_010': (666, 0.99), | |
} | |
ypred = pd.DataFrame(y_pred).T | |
ypred.columns = ['Class ID', 'Score'] | |
prefix = colorstr('Prediction:') | |
print(f"{prefix}:\n", ypred) | |
gap = global_average_precision_score(y_true, y_pred) | |
prefix = colorstr('GAP:') | |
print(f"\n{prefix}: ", round(gap, 8)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Reference:
Source from here: https://github.com/yisaienkov/evaluations/blob/master/evaluations/kaggle_2020/global_average_precision.py