Last active
July 29, 2019 10:08
-
-
Save chiragjn/8c4c2c1213224c1154d6b341c5cc09a7 to your computer and use it in GitHub Desktop.
Adapter FF layer as described in Adapter-bert
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
K = tf.keras.backend | |
def gelu(x): | |
"""Gaussian Error Linear Unit. | |
This is a smoother version of the RELU. | |
Original paper: https://arxiv.org/abs/1606.08415 | |
Args: | |
x: float Tensor to perform activation. | |
Returns: | |
`x` with the GELU activation applied. | |
""" | |
cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) | |
return x * cdf | |
class FeedFowardAdapterLayer(tf.keras.layers.Layer): | |
def __init__(self, hidden_size=64, init_scale=1e-3, **kwargs): | |
self.hidden_size = hidden_size | |
self.init_scale = init_scale | |
super(FeedFowardAdapterLayer, self).__init__(**kwargs) | |
def build(self, input_shape): | |
in_size = input_shape[1] | |
self.dense1 = tf.keras.layers.Dense(units=self.hidden_size, | |
activation=gelu, | |
kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.init_scale), | |
bias_initializer=tf.keras.initializers.Zeros()) | |
self.dense2 = tf.keras.layers.Dense(units=in_size, | |
activation=None, | |
kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.init_scale), | |
bias_initializer=tf.keras.initializers.Zeros()) | |
super(FeedFowardAdapterLayer, self).build(input_shape) # Be sure to call this at the end | |
def call(self, x): | |
return x + self.dense2(self.dense1(x)) | |
def compute_output_shape(self, input_shape): | |
return input_shape |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment