Created
October 1, 2015 11:49
-
-
Save chiral/248040ef4fdb1f82179c to your computer and use it in GitHub Desktop.
3 layer perceptron for iris data by torch7. iris.csv can be obtained from https://gist.github.com/chiral/5b3609e884e3af8b412a
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- loarocks install csv | |
csv = require "csv" | |
nn = require "nn" | |
-- prepare data set | |
dataset={} | |
size=0 | |
ans={setosa=1,versicolor=2,virginica=3} | |
local f = csv.open("iris.csv") | |
for cols in f:lines() do | |
local input=torch.Tensor(4) | |
local output=torch.Tensor(3) | |
for i,v in ipairs(cols) do | |
if i>=2 and i<=5 then | |
input[i-1] = v | |
end | |
if i==6 then | |
for j=1,3 do | |
output[j] = j==ans[v] and 1 or 0 | |
end | |
end | |
print (input,output) | |
end | |
size=size+1 | |
dataset[size]={input,output} | |
end | |
function dataset:size() return size end | |
-- make model | |
nhidden = 5 | |
model = nn.Sequential(); | |
model:add(nn.Linear(4,nhidden)) | |
model:add(nn.Tanh()) | |
model:add(nn.Linear(nhidden,3)) | |
model:add(nn.SoftMax()) | |
print (model) | |
criterion = nn.MSECriterion() | |
trainer = nn.StochasticGradient(model, criterion) | |
trainer.learningRate = 0.01 | |
trainer.maxIteration = 1000 | |
trainer:train(dataset) | |
test1_in = torch.Tensor(4) | |
test1_in[1] = 6.7 | |
test1_in[2] = 2.5 | |
test1_in[3] = 5.8 | |
test1_in[4] = 1.8 | |
-- answer = 3 | |
test1_out = model:forward(test1_in) | |
print (test1_out) -- OK |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment