Last active
May 4, 2019 13:16
-
-
Save chiral/2560383d5643da80b6bf to your computer and use it in GitHub Desktop.
An implementation of Collapsed Gibbs sampling algorithm for LDA in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# LDA collapsed Gibbs sampler implementation in R by isobe | |
bows2corpus <- function(bows) { | |
print("bows2corpus") | |
docs <- list() | |
words <- c() | |
index <- list() | |
last_index <- 0 | |
word2index <- function(word) { | |
if (is.null(index[[word]])) { | |
last_index <<- last_index+1 | |
index[[word]] <<- last_index | |
words[last_index] <<- word | |
} | |
return(index[[word]]) | |
} | |
D <- length(bows) | |
for (d in 1:D) { | |
bow <- bows[[d]] | |
ws <- c() | |
for (word in names(bow)) { | |
count <- bow[[word]] | |
i <- word2index(word) | |
ws <- c(ws,rep(i,count)) | |
} | |
docs[[d]] <- ws | |
} | |
return(list(docs=docs,words=words,index=index)) | |
} | |
lda_cgs <- function(corpus,K,alpha,beta,num_iter=50) { | |
print("lda_cgs") | |
docs <- corpus$docs | |
words <- corpus$words | |
V <- length(words) | |
D <- length(docs) | |
print(paste("V,D=",V,D)) | |
### initialize ### | |
L <- 0 | |
topics <- list() # represents V*D sparse matrix | |
n_td <- matrix(0,K,D) | |
n_wt <- matrix(0,V,K) | |
n_t <- rep(0,K) | |
for (d in 1:D) { | |
ws <- docs[[d]] | |
N <- length(ws) | |
L <- L + N | |
ks <- ceiling(runif(N)*K) | |
topics[[d]] <- ks | |
for (w in 1:N) { | |
i <- ws[w] | |
k <- ks[w] | |
n_wt[i,k] <- n_wt[i,k]+1 | |
} | |
for (k in 1:K) { | |
nk <- sum(which(ks==k)) | |
n_td[k,d] <- nk | |
n_t[k] <- n_t[k]+nk | |
} | |
} | |
### update topic of word ### | |
before_update <- function(d,w,i) { | |
k <- topics[[d]][w] | |
topics[[d]][w] <<- 0 | |
n_wt[i,k] <<- n_wt[i,k]-1 | |
n_td[k,d] <<- n_td[k,d]-1 | |
n_t[k] <<- n_t[k]-1 | |
} | |
after_update <- function(d,w,i,k) { | |
topics[[d]][w] <<- k | |
n_wt[i,k] <<- n_wt[i,k]+1 | |
n_td[k,d] <<- n_td[k,d]+1 | |
n_t[k] <<- n_t[k]+1 | |
} | |
### Gibbs sampling ### | |
sample <- function(d,w,i) { | |
prob <- c() | |
for (k in 1:K) { | |
v <- alpha+n_td[k,d] | |
v <- v * (beta+n_wt[i,k]) | |
v <- v / (beta*V+n_t[k]) | |
prob[k] <- v | |
} | |
prob <- prob/sum(prob) | |
r <- rmultinom(1,1,prob) | |
return(which(r==1)) | |
} | |
### main loop | |
stats <- matrix(0,L*num_iter,5) | |
for (iter in 1:num_iter) { | |
print(paste("iter=",iter)) | |
count <- 0 | |
for (d in 1:D) { | |
print(paste("iter=",iter,"doc=",d,'/',D)) | |
ws <- docs[[d]] | |
N <- length(ws) | |
for (w in 1:N) { | |
i <- ws[w] | |
before_update(d,w,i) | |
k <- sample(d,w,i) | |
after_update(d,w,i,k) | |
count <- count+1 | |
stats[(iter-1)*L+count,] <- c(iter,d,w,i,k) | |
} | |
} | |
} | |
### process result ### | |
return(data.frame(iter=stats[,1], | |
d=stats[,2],w=stats[,3],i=stats[,4],k=stats[,5])) | |
} | |
csv2bows <- function(fn) { | |
print("csv2bows") | |
df <- read.csv(fn,stringsAsFactors=F) | |
bows <- list() | |
for (i in 1:nrow(df)) { | |
d <- df[i,]$doc | |
word <- df[i,]$word | |
count <- df[i,]$count | |
if (length(bows)<d) { | |
bows[[d]] <- list() | |
} | |
bows[[d]][[word]] <- count | |
} | |
return(bows) | |
} | |
stats <- NULL | |
corpus <- NULL | |
test <- function(f_in,f_out,K) { | |
bows <- csv2bows(f_in) | |
corpus <<- bows2corpus(bows) | |
alpha <- 50/K | |
beta <- 0.1 | |
stats <<- lda_cgs(corpus,K,alpha,beta) | |
write.csv(stats,f_out) | |
} | |
test("http://labs.adfive.net/mlhackathon/20140614/in1_small.csv","out1.csv",5) | |
hist(stats[which(stats$d==1),]$k) | |
corpus$index['タモリ'] | |
stats[which(stats$i==66),]$k) | |
corpus$words[stats[which(stats$iter==50 & stats$i==1),]$i] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment