Last active
August 29, 2015 14:01
-
-
Save chiral/49c20238704cec2937ca to your computer and use it in GitHub Desktop.
An implementation in R for "Exact Soft Confidence-Weighted Learning" ( http://icml.cc/2012/papers/86.pdf )
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library("rjson") | |
scw <- function(D,eta,verbose=F) { | |
phi <- qnorm(eta) | |
psi <- 1+phi^2/2 | |
zeta <- 1+phi^2 | |
mu <- rep(0,D) | |
sigma <- diag(D) | |
predict <- function(x) { | |
tmp <- sign(sum(mu*x)) | |
if (verbose) print(paste("y=",tmp)) | |
return(tmp) | |
} | |
loss <- function(m,v) { | |
return(max(0,phi*sqrt(v)-m)) | |
} | |
alpha <- function(m,v) { | |
tmp <- -m*psi+sqrt(m^2*phi^4/4+v*phi^2*zeta) | |
tmp <- tmp/(v*zeta) | |
return(max(0,tmp)) | |
} | |
calc_u <- function(a,v) { | |
avphi <- a*v*phi | |
tmp <- -avphi + sqrt(avphi^2+4*v) | |
tmp <- tmp^2/4 | |
return(tmp) | |
} | |
beta <- function(a,u,v) { | |
tmp <- a*phi/(sqrt(u)+v*a*phi) # vector | |
tmp <- sum(tmp) # scalar | |
return(tmp) | |
} | |
step <- function(x,y) { | |
y1 <- predict(x) | |
m <- y * sum(mu*x) | |
v <- sum(t(x) %*% sigma %*% x) | |
if (loss(m,v)>=0) { | |
a <- alpha(m,v) | |
u <- calc_u(a,v) | |
b <- beta(a,u,v) | |
x1 <- sigma %*% x | |
mu <<- mu+a*y*x1 | |
sigma <<- sigma-b*(x1 %*% t(x1)) | |
} | |
return(y1) | |
} | |
return(list(step=step,predict=predict)) | |
} | |
test1 <- function(eta) { | |
print("***test1***") | |
f <- scw(2,eta,verbose=T) | |
f$step(c(1,1),1) | |
f$step(c(0.3,0.4),1) | |
f$step(c(-1,-1),-1) | |
f$step(c(-1,-1),-1) | |
f$step(c(0.1,0.1),-1) | |
f$predict(c(0.1,0.1)) | |
} | |
test2 <- function(eta) { | |
print("***test2***") | |
# data set is here. | |
# https://github.com/IshitaTakeshi/Hackathon/tree/master/MLAkiba2/Code | |
f <- scw(64,eta) | |
train <- fromJSON(paste(readLines("digits_train.json"), collapse="")) | |
train.result <- c() | |
for (i in 1:length(train$images)) { | |
tmp <- f$step(train$images[[i]],train$labels[i]) | |
train.result <- c(train.result,tmp) | |
} | |
print(table(data.frame(train=train$labels,result=train.result))) | |
test <- fromJSON(paste(readLines("digits_test.json"), collapse="")) | |
test.result <- c() | |
for (i in 1:length(test$images)) { | |
tmp <- f$predict(test$images[[i]]) | |
test.result <- c(test.result,tmp) | |
} | |
print(table(data.frame(test=test$labels,result=test.result))) | |
} | |
test1(0.9) | |
test2(0.9) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment