Created
April 19, 2020 06:26
-
-
Save chmodsss/867e01cc3eeeaa42226ac931709077dc to your computer and use it in GitHub Desktop.
Fine tuning glove embeddings using Mittens
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import csv | |
import numpy as np | |
from collections import Counter | |
from nltk.corpus import brown | |
from mittens import GloVe, Mittens | |
from sklearn.feature_extraction import stop_words | |
from sklearn.feature_extraction.text import CountVectorizer | |
def glove2dict(glove_filename): | |
with open(glove_filename, encoding='utf-8') as f: | |
reader = csv.reader(f, delimiter=' ', quoting=csv.QUOTE_NONE) | |
embed = {line[0]: np.array(list(map(float, line[1:]))) | |
for line in reader} | |
return embed | |
glove_path = "glove.6B.50d.txt" # get it from https://nlp.stanford.edu/projects/glove | |
pre_glove = glove2dict(glove_path) | |
sw = list(stop_words.ENGLISH_STOP_WORDS) | |
brown_data = brown.words()[:200000] | |
brown_nonstop = [token.lower() for token in brown_data if (token.lower() not in sw)] | |
oov = [token for token in brown_nonstop if token not in pre_glove.keys()] | |
def get_rareoov(xdict, val): | |
return [k for (k,v) in Counter(xdict).items() if v<=val] | |
#oov_rare = get_rareoov(oov, 1) | |
#corp_vocab = list(set(oov) - set(oov_rare)) | |
#brown_tokens = [token for token in brown_nonstop if token not in oov_rare] | |
#brown_doc = [' '.join(brown_tokens)] | |
corp_vocab = list(set(oov)) | |
brown_doc = [' '.join(brown_nonstop)] | |
cv = CountVectorizer(ngram_range=(1,1), vocabulary=corp_vocab) | |
X = cv.fit_transform(brown_doc) | |
Xc = (X.T * X) | |
Xc.setdiag(0) | |
coocc_ar = Xc.toarray() | |
mittens_model = Mittens(n=50, max_iter=1000) | |
new_embeddings = mittens_model.fit( | |
coocc_ar, | |
vocab=corp_vocab, | |
initial_embedding_dict= pre_glove) | |
newglove = dict(zip(corp_vocab, new_embeddings)) | |
f = open("repo_glove.pkl","wb") | |
pickle.dump(newglove, f) | |
f.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment