Skip to content

Instantly share code, notes, and snippets.

@chokkan
Created October 10, 2012 13:38
Show Gist options
  • Save chokkan/3865703 to your computer and use it in GitHub Desktop.
Save chokkan/3865703 to your computer and use it in GitHub Desktop.
Logistic Regression
import math
import random
def train(w, D, T):
for t in range(1, T+1):
x, y = random.choice(D)
a = sum([w[i] * x[i] for i in range(len(w))]) # a(x) = w \cdot x
g = y - (1. / (1. + math.exp(-a))) if -100. < a else y # g = y - p
eta = 1. / t
for i in range(len(w)): # w ← w + eta * g * x
w[i] += eta * g * x[i] #
def prob(x):
a = sum([w[i] * x[i] for i in range(len(w))]) # a(x) = w \cdot x
return 1. / (1 + math.exp(-a)) if -100. < a else 0. # p = 1/(1 + exp(a))
if __name__ == '__main__':
w = [0.] * 9
D = (
((1, 1, 1, 1, 1, 1, 0, 0, 0), 1),
((1, 0, 0, 0, 1, 1, 1, 1, 1), 0),
)
train(w, D, 10000)
print prob(D[0][0]), prob(D[1][0])
print w
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment