Created
          October 10, 2012 13:38 
        
      - 
      
 - 
        
Save chokkan/3865703 to your computer and use it in GitHub Desktop.  
    Logistic Regression
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import math | |
| import random | |
| def train(w, D, T): | |
| for t in range(1, T+1): | |
| x, y = random.choice(D) | |
| a = sum([w[i] * x[i] for i in range(len(w))]) # a(x) = w \cdot x | |
| g = y - (1. / (1. + math.exp(-a))) if -100. < a else y # g = y - p | |
| eta = 1. / t | |
| for i in range(len(w)): # w ← w + eta * g * x | |
| w[i] += eta * g * x[i] # | |
| def prob(x): | |
| a = sum([w[i] * x[i] for i in range(len(w))]) # a(x) = w \cdot x | |
| return 1. / (1 + math.exp(-a)) if -100. < a else 0. # p = 1/(1 + exp(a)) | |
| if __name__ == '__main__': | |
| w = [0.] * 9 | |
| D = ( | |
| ((1, 1, 1, 1, 1, 1, 0, 0, 0), 1), | |
| ((1, 0, 0, 0, 1, 1, 1, 1, 1), 0), | |
| ) | |
| train(w, D, 10000) | |
| print prob(D[0][0]), prob(D[1][0]) | |
| print w | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment