Created
October 17, 2012 15:18
-
-
Save chokkan/3906099 to your computer and use it in GitHub Desktop.
Maximum Likelihood Estimation (MLE) for Hidden Markov Model (HMM)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Maximum Likelihood Estimation (MLE) for Hidden Markov Model (HMM). | |
Copyright (c) 2012 by Naoaki Okazaki | |
""" | |
import collections | |
import json | |
import math | |
import sys | |
def logprob(V): | |
n = sum(V.itervalues()) | |
for x, f in V.iteritems(): | |
V[x] = math.log(f / n) | |
def train(D): | |
S = collections.defaultdict(lambda: collections.defaultdict(float)) | |
T = collections.defaultdict(lambda: collections.defaultdict(float)) | |
for seq in D: | |
prev = None | |
for token, label in seq: | |
S[label][token] += 1 | |
if prev is not None: | |
T[prev][label] += 1 | |
prev = label | |
map(logprob, S.itervalues()) | |
map(logprob, T.itervalues()) | |
return S, T | |
def readiter(fi): | |
seq = [] | |
for line in fi: | |
line = line.strip('\n') | |
if not line: | |
yield seq | |
seq = [] | |
else: | |
seq.append(line.split('\t')) | |
if __name__ == '__main__': | |
S, T = train(readiter(sys.stdin)) | |
json.dump({'S': S, 'T': T}, sys.stdout, indent=2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment