-
-
Save choldgraf/26996d42eb90ceb96d04 to your computer and use it in GitHub Desktop.
script to generate proposed new logo for MNE
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
=============================================================================== | |
Script 'mne logo' | |
=============================================================================== | |
This script makes the logo for MNE. | |
""" | |
# @author: drmccloy | |
# Created on Mon Jul 20 11:28:16 2015 | |
# License: BSD (3-clause) | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import rcParams | |
from matplotlib.mlab import bivariate_normal | |
from matplotlib.path import Path | |
from matplotlib.text import TextPath | |
from matplotlib.patches import PathPatch | |
from matplotlib.colors import LinearSegmentedColormap | |
from matplotlib.transforms import Bbox | |
grayscale = False | |
justify_fudge = 0.97 # to get justification to work properly | |
center_fudge = np.array([3, 0]) # compensate for font bounding box padding | |
# font, etc | |
dpi = 72. | |
rcp = {'font.sans-serif': ['M+ 1c'], 'font.style': 'normal', | |
'font.weight': 'black', 'font.variant': 'normal', 'figure.dpi': dpi, | |
'savefig.dpi': dpi, 'contour.negative_linestyle': 'solid'} | |
plt.rcdefaults() | |
rcParams.update(rcp) | |
# initialize figure (no axes, margins, etc) | |
fig = plt.figure(1, figsize=(5, 3), frameon=False, dpi=dpi) | |
ax = plt.Axes(fig, [0., 0., 1., 1.]) | |
ax.set_axis_off() | |
fig.add_axes(ax) | |
# fake field data | |
delta = 0.1 | |
x = np.arange(-8.0, 8.0, delta) | |
y = np.arange(-3.0, 3.0, delta) | |
X, Y = np.meshgrid(x, y) | |
Z1 = bivariate_normal(X, Y, 8.0, 7.0, -5.0, 0.9, 1.0) | |
Z2 = bivariate_normal(X, Y, 15.0, 2.5, 2.6, -2.5, 2.5) | |
Z = Z2 - 0.7 * Z1 | |
# color map: field gradient (yellow-red-transparent-blue-cyan) | |
yrtbc = {'red': ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)), | |
'blue': ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)), | |
'green': ((0.0, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)), | |
'alpha': ((0.0, 1.0, 1.0), (0.4, 0.8, 0.8), (0.5, 0.2, 0.2), | |
(0.6, 0.8, 0.8), (1.0, 1.0, 1.0))} | |
# color map: field lines (red | blue) | |
redbl = {'red': ((0., 1., 1.), (0.5, 1., 0.), (1., 0., 0.)), | |
'blue': ((0., 0., 0.), (0.5, 0., 1.), (1., 1., 1.)), | |
'green': ((0., 0., 0.), (1., 0., 0.)), | |
'alpha': ((0., 0.4, 0.4), (1., 0.4, 0.4))} | |
mne_field_grad_cols = LinearSegmentedColormap('mne_grad', yrtbc) | |
mne_field_line_cols = LinearSegmentedColormap('mne_line', redbl) | |
if grayscale: | |
# convert gradient to grayscale | |
Zrgba = mne_field_grad_cols((Z - Z.min()) / (Z.max() - Z.min())) | |
Zrgba[:, :, :3] = (Zrgba[:, :, :3] * np.array([0.299, 0.587, 0.114]) | |
).sum(axis=-1, keepdims=True) | |
# plot gradient and contour lines | |
im = plt.imshow(Zrgba, aspect='equal') | |
cs = plt.contour(Z, 9, colors='k', linewidths=1, alpha=0.2) | |
else: | |
# plot gradient and contour lines | |
im = plt.imshow(Z, cmap=mne_field_grad_cols, aspect='equal') | |
cs = plt.contour(Z, 9, cmap=mne_field_line_cols, linewidths=1) | |
plot_dims = np.r_[np.diff(ax.get_xbound()), np.diff(ax.get_ybound())] | |
# create MNE clipping mask | |
mne_path = TextPath((0, 0), 'MNE') | |
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0) | |
vert = mne_path.vertices - dims / 2. | |
mult = (plot_dims / dims).min() | |
mult = [mult, -mult] # y axis is inverted (origin at top left) | |
offset = plot_dims / 2. - center_fudge | |
mne_clip = Path(offset + vert * mult, mne_path.codes) | |
# apply clipping mask to field gradient and lines | |
im.set_clip_path(mne_clip, transform=im.get_transform()) | |
for coll in cs.collections: | |
coll.set_clip_path(mne_clip, transform=im.get_transform()) | |
# get final position of clipping mask | |
mne_corners = mne_clip.get_extents().corners() | |
# add tagline | |
rcParams.update({'font.weight': 'light'}) | |
tag_path = TextPath((0, 0), 'MEG + EEG ANALYSIS & VISUALIZATION') | |
dims = tag_path.vertices.max(0) - tag_path.vertices.min(0) | |
vert = tag_path.vertices - dims / 2. | |
mult = justify_fudge * (plot_dims / dims).min() | |
mult = [mult, -mult] # y axis is inverted | |
offset = mne_corners[-1] - np.array([mne_clip.get_extents().size[0] / 2., | |
-dims[1]]) | |
tag_clip = Path(offset + vert * mult, tag_path.codes) | |
tag_patch = PathPatch(tag_clip, facecolor='k', edgecolor='none', zorder=10) | |
ax.add_patch(tag_patch) | |
yl = ax.get_ylim() | |
yy = np.max([tag_clip.vertices.max(0)[-1], | |
tag_clip.vertices.min(0)[-1]]) | |
ax.set_ylim(np.ceil(yy), yl[-1]) | |
# plot actual image extent plus a bit of padding | |
extent = Bbox(np.c_[ax.get_xlim(), ax.get_ylim()]) | |
extent = extent.transformed(ax.transData + fig.dpi_scale_trans.inverted()) | |
plt.draw() | |
plt.savefig('mne-logo.svg', bbox_inches=extent.expanded(1.2, 1.)) | |
plt.savefig('mne-logo.png', bbox_inches=extent.expanded(1.2, 1.)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment