Last active
August 29, 2015 14:07
-
-
Save choldgraf/6a7be7866f2a3a3d3f98 to your computer and use it in GitHub Desktop.
GridSearchCV memory usage
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:dfb7fdbd72babce26c85e0d1420b1e20600c1dd13eb385470e9a3bc420f2bf64" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from sklearn import grid_search, linear_model\n", | |
"import numpy as np\n", | |
"%load_ext memory_profiler" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"X = np.random.randn(24000, 2000)\n", | |
"w = np.random.randn(2000)\n", | |
"y = np.dot(X, w)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"lsqr" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"rid = linear_model.Ridge(solver='lsqr')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit rid.fit(X, y)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 800.43 MiB, increment: 367.09 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(4)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 1899.48 MiB, increment: 1465.39 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(8)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 2726.49 MiB, increment: 2291.86 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 2, | |
"metadata": {}, | |
"source": [ | |
"sparse_cg" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"rid = linear_model.Ridge(solver='sparse_cg')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit rid.fit(X, y)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 789.27 MiB, increment: 366.42 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(4)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 1888.10 MiB, increment: 1464.92 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(8)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 3352.96 MiB, increment: 2929.69 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 2, | |
"metadata": {}, | |
"source": [ | |
"Cholesky" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"rid = linear_model.Ridge(solver='cholesky')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit rid.fit(X, y)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 859.59 MiB, increment: 436.30 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(4)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 859.64 MiB, increment: 366.24 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%memit [rid.fit(X, y) for _ in range(8)]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"peak memory: 859.64 MiB, increment: 366.21 MiB\n" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment