Created
June 23, 2021 10:17
-
-
Save choonkiattay/dc8def4ca94770cd2481b1b864448a3d to your computer and use it in GitHub Desktop.
Creates sequence dataset for RNN
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def dataset_gen(): | |
sequence_dict = {} | |
alphabet_list = [chr(x) for x in range(65,91)] | |
for i in range(len(alphabet_list)-5): | |
sequence_dict[i] = alphabet_list[i:i+6] | |
number_trans = 2000 | |
df_in_list = [(sequence_dict.get(random.randint(1,9))) for x in range(number_trans)] | |
df = pd.DataFrame(df_in_list, columns=['week1', 'week2', 'week3', 'week4', 'week5', 'week6']) | |
df['seq_string'] = df.apply(lambda x: ' '.join([str(y) for y in x.values.tolist()]), axis=1) | |
lines = df['seq_string'].tolist() | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(lines) | |
sequences = tokenizer.texts_to_sequences(lines) | |
sequences = np.array(sequences) | |
split_ratio = int(0.8*number_trans) | |
X, y = sequences[:, :-1], sequences[:,-1] | |
X_test, y_test = sequences[split_ratio:, :-1], sequences[split_ratio:,-1] | |
vocab_size = len(tokenizer.word_index) + 1 | |
y = to_categorical(y, num_classes=vocab_size) | |
y_test = to_categorical(y_test, num_classes=vocab_size) | |
seq_length = X.shape[1] | |
output_dim = seq_length + 1 | |
return X, y, X_test, y_test, vocab_size, seq_length, output_dim, lines |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment