Created
June 9, 2017 02:52
-
-
Save chriddyp/9b2b3e8a6c67697279d3724dce5dab3c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import dash | |
import dash_core_components as dcc | |
import dash_html_components as html | |
import plotly.graph_objs as go | |
import pandas as pd | |
app = dash.Dash() | |
df = pd.read_csv( | |
'https://gist.githubusercontent.com/chriddyp/' | |
'cb5392c35661370d95f300086accea51/raw/' | |
'8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/' | |
'indicators.csv') | |
available_indicators = df['Indicator Name'].unique() | |
app.layout = html.Div([ | |
html.Div([ | |
html.Div([ | |
dcc.Dropdown( | |
id='crossfilter-xaxis-column', | |
options=[{'label': i, 'value': i} for i in available_indicators], | |
value='Fertility rate, total (births per woman)' | |
), | |
dcc.RadioItems( | |
id='crossfilter-xaxis-type', | |
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], | |
value='Linear', | |
labelStyle={'display': 'inline-block'} | |
) | |
], | |
style={'width': '49%', 'display': 'inline-block'}), | |
html.Div([ | |
dcc.Dropdown( | |
id='crossfilter-yaxis-column', | |
options=[{'label': i, 'value': i} for i in available_indicators], | |
value='Life expectancy at birth, total (years)' | |
), | |
dcc.RadioItems( | |
id='crossfilter-yaxis-type', | |
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], | |
value='Linear', | |
labelStyle={'display': 'inline-block'} | |
) | |
], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}) | |
], style={ | |
'borderBottom': 'thin lightgrey solid', | |
'backgroundColor': 'rgb(250, 250, 250)', | |
'padding': '10px 5px' | |
}), | |
html.Div([ | |
dcc.Graph( | |
id='crossfilter-indicator-scatter', | |
hoverData={'points': [{'customdata': 'Japan'}]} | |
) | |
], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}), | |
html.Div([ | |
dcc.Graph(id='x-time-series'), | |
dcc.Graph(id='y-time-series'), | |
], style={'display': 'inline-block', 'width': '49%'}), | |
html.Div(dcc.Slider( | |
id='crossfilter-year--slider', | |
min=df['Year'].min(), | |
max=df['Year'].max(), | |
value=df['Year'].max(), | |
step=None, | |
marks={str(year): str(year) for year in df['Year'].unique()} | |
), style={'width': '49%', 'padding': '0px 20px 20px 20px'}) | |
]) | |
@app.callback( | |
dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'), | |
[dash.dependencies.Input('crossfilter-xaxis-column', 'value'), | |
dash.dependencies.Input('crossfilter-yaxis-column', 'value'), | |
dash.dependencies.Input('crossfilter-xaxis-type', 'value'), | |
dash.dependencies.Input('crossfilter-yaxis-type', 'value'), | |
dash.dependencies.Input('crossfilter-year--slider', 'value')]) | |
def update_graph(xaxis_column_name, yaxis_column_name, | |
xaxis_type, yaxis_type, | |
year_value): | |
dff = df[df['Year'] == year_value] | |
return { | |
'data': [go.Scatter( | |
x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'], | |
y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'], | |
text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], | |
customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], | |
mode='markers', | |
marker={ | |
'size': 15, | |
'opacity': 0.5, | |
'line': {'width': 0.5, 'color': 'white'} | |
} | |
)], | |
'layout': go.Layout( | |
xaxis={ | |
'title': xaxis_column_name, | |
'type': 'linear' if xaxis_type == 'Linear' else 'log' | |
}, | |
yaxis={ | |
'title': yaxis_column_name, | |
'type': 'linear' if yaxis_type == 'Linear' else 'log' | |
}, | |
margin={'l': 40, 'b': 30, 't': 10, 'r': 0}, | |
height=450, | |
hovermode='closest' | |
) | |
} | |
def create_time_series(dff, axis_type, title): | |
return { | |
'data': [go.Scatter( | |
x=dff['Year'], | |
y=dff['Value'], | |
mode='lines+markers' | |
)], | |
'layout': { | |
'height': 225, | |
'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10}, | |
'annotations': [{ | |
'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom', | |
'xref': 'paper', 'yref': 'paper', 'showarrow': False, | |
'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)', | |
'text': title | |
}], | |
'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'}, | |
'xaxis': {'showgrid': False} | |
} | |
} | |
@app.callback( | |
dash.dependencies.Output('x-time-series', 'figure'), | |
[dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), | |
dash.dependencies.Input('crossfilter-xaxis-column', 'value'), | |
dash.dependencies.Input('crossfilter-xaxis-type', 'value')]) | |
def update_y_timeseries(hoverData, xaxis_column_name, axis_type): | |
country_name = hoverData['points'][0]['customdata'] | |
dff = df[df['Country Name'] == country_name] | |
dff = dff[dff['Indicator Name'] == xaxis_column_name] | |
title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name) | |
return create_time_series(dff, axis_type, title) | |
@app.callback( | |
dash.dependencies.Output('y-time-series', 'figure'), | |
[dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), | |
dash.dependencies.Input('crossfilter-yaxis-column', 'value'), | |
dash.dependencies.Input('crossfilter-yaxis-type', 'value')]) | |
def update_x_timeseries(hoverData, yaxis_column_name, axis_type): | |
dff = df[df['Country Name'] == hoverData['points'][0]['customdata']] | |
dff = dff[dff['Indicator Name'] == yaxis_column_name] | |
return create_time_series(dff, axis_type, yaxis_column_name) | |
app.css.append_css({ | |
'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css' | |
}) | |
if __name__ == '__main__': | |
app.run_server() |
Ok. I've managed this, just missed the right property and wanted to input this line into line
not marker
. Cheers!
Hi, where can I find the data you used for this. It's not in the zip folder
Vicky, here's an URL for you:
https://gist.githubusercontent.com/chriddyp/cb5392c35661370d95f300086accea51/raw/8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/indicators.csv
Thank you so much
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Please could you tell me why changing color at line 97 on
['red' if cnt == 'Poland' else 'yellow' for cnt in countries]}
instead ofwhite
doesn't affect a result? Normally it works but is there something what I don't understand here?