Created
January 20, 2025 19:45
-
-
Save chrisbodhi/541e1c86accf430196a004bd43aefd9c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// via o1 | |
const std = @import("std"); | |
// Some physical constants (SI units). | |
// NOTE: Values are approximate for demonstration. | |
const G = 6.67430e-11; // Universal Gravitational Constant (m^3 kg^-1 s^-2) | |
const M_EARTH = 5.97219e24; // Mass of Earth (kg) | |
const R_EARTH = 6_371_000.0; // Mean radius of Earth (meters) | |
const MU_EARTH = G * M_EARTH; // Standard gravitational parameter of Earth (m^3 / s^2) | |
const M_MOON = 7.3477e22; // Mass of the Moon (kg) (for future expansions) | |
const R_MOON_ORBIT = 384_400_000.0; // Average Earth-Moon distance (m) | |
// Default simulation step | |
const DEFAULT_TIME_STEP = 0.1; // seconds | |
// A small epsilon for floating comparisons | |
const EPSILON = 1e-9; | |
// Simple struct to hold skyhook parameters | |
pub const SkyhookParams = struct { | |
// Tether geometry | |
tetherLength: f64, // length of tether in meters | |
altitudeCenter: f64, // altitude of tether's rotation center above Earth's surface (meters) | |
// Tether material & rotation | |
tetherDensity: f64, // density of tether material (kg/m^3) | |
tensileStrength: f64, // tensile strength (Pa = N/m^2) | |
rotationRate: f64, // angular velocity (rad/s) | |
// Payload properties | |
payloadMass: f64, // mass of the payload (kg) | |
// Simulation | |
timeStep: f64, // time step for integrator (seconds) | |
}; | |
// A struct holding the "state" of the tether tip and payload | |
pub const State = struct { | |
time: f64, // simulation time (seconds) | |
tetherAngle: f64, // current rotational angle of tether about center (rad) | |
payloadPosX: f64, // x-position of payload (assuming center at Earth center = 0, for 2D) | |
payloadPosY: f64, // y-position of payload | |
payloadVelX: f64, // x-velocity | |
payloadVelY: f64, // y-velocity | |
}; | |
// Result of the simulation at each step | |
pub const SimResult = struct { | |
states: std.ArrayList(State), | |
}; | |
// Check input parameters for basic physical validity | |
fn validateParams(params: SkyhookParams) !void { | |
// Basic checks on geometry | |
if (params.tetherLength <= 0.0) { | |
return error.InvalidTetherLength; | |
} | |
if (params.altitudeCenter <= 0.0) { | |
return error.InvalidAltitude; | |
} | |
// Check GPa or Pa for the tether | |
// For example, Kevlar ~ 3.6 GPa, Dyneema ~3.6 GPa, CNT theoretical ~ 100+ GPa, etc. | |
// We'll treat the user-provided value as Pascals. | |
if (params.tensileStrength <= 1e6) { // e.g. if less than 1 MPa, that’s invalid for a space tether | |
return error.InvalidTensileStrength; | |
} | |
// Check rotation rate validity | |
// The tether tip speed shouldn't exceed orbital velocity at that altitude (rough rule). | |
// Orbital velocity at altitude h is sqrt(MU_EARTH / (R_EARTH + h)). | |
// Tether tip speed ~ rotationRate * (tetherLength/2). | |
const orbitalV = std.math.sqrt(MU_EARTH / (R_EARTH + params.altitudeCenter)); | |
const tetherTipSpeed = params.rotationRate * (params.tetherLength / 2.0); | |
if (tetherTipSpeed > orbitalV * 2.0) { | |
// If the tip speed is 2x the orbital speed, that’s suspiciously high. | |
return error.TipSpeedTooHigh; | |
} | |
// Basic check on density | |
if (params.tetherDensity <= 0.0) { | |
return error.InvalidDensity; | |
} | |
// Check time step | |
if (params.timeStep <= 0.0) { | |
return error.InvalidTimeStep; | |
} | |
} | |
// Estimate tension in the tether due to rotation and gravity. | |
// This is an extremely simplified approach that looks at the | |
// maximum tension at the tether root (center) if spinning in uniform circular motion. | |
// T = mass_of_tether_segment * (omega^2 * r) + mg(r). | |
// We do a rough integrative or approximate approach for demonstration. | |
fn estimateTetherMaxTension(params: SkyhookParams) f64 { | |
// Approximate tether as small segments from center to tip. | |
var steps = 100; | |
var dr = params.tetherLength / @intToFloat(f64, steps); | |
var maxTension = 0.0; | |
var r = 0.0; | |
while (r < params.tetherLength) : (r += dr) { | |
// mass of small segment | |
const segmentVolume = dr * 1.0 * 1.0; // assume cross-sectional area = 1 m^2 for simplicity | |
// better approach: cross-sectional area = design based on stress constraints, etc. | |
const segmentMass = segmentVolume * params.tetherDensity; | |
// centripetal force on that segment | |
const centripetalF = segmentMass * (params.rotationRate * params.rotationRate) * r; | |
// gravitational force at that radius from Earth's center | |
// distance from Earth center = R_EARTH + altitudeCenter ± r | |
// we approximate that the difference is not huge for tension calculation (rough). | |
const distance = R_EARTH + params.altitudeCenter + r; | |
const gravityF = segmentMass * (MU_EARTH / (distance * distance)); | |
// total force | |
const f = centripetalF - gravityF; | |
// note: direction is slightly more complicated, but we'll do a rough scalar approach. | |
// Accumulate tension from tip down to center | |
// For a real model, tension accumulates from the tip to the root. | |
maxTension += f * dr; // again, extremely simplified | |
} | |
return maxTension; | |
} | |
// Perform a single step of the simulation, returning updated state | |
fn stepSimulation(state: State, params: SkyhookParams) State { | |
// We model the center of rotation of the tether at altitudeCenter above Earth's surface. | |
// We'll place Earth at (0,0), tether center at (0, R_EARTH + altitudeCenter). | |
// We'll treat the tether tip rotating around that point. | |
// Meanwhile, the payload is at some (x,y) with some velocity, | |
// with gravitational acceleration from Earth. | |
const dt = params.timeStep; | |
var newState = state; | |
// 1) Update tether rotation | |
newState.tetherAngle = state.tetherAngle + params.rotationRate * dt; | |
// 2) Gravitational acceleration on payload | |
const rPayload = std.math.sqrt(state.payloadPosX * state.payloadPosX + | |
state.payloadPosY * state.payloadPosY); | |
// Avoid divide-by-zero | |
if (rPayload < EPSILON) { | |
// If the payload is essentially at the center, skip or clamp | |
return newState; | |
} | |
const gAccel = MU_EARTH / (rPayload * rPayload); | |
// Direction toward Earth center | |
const ax = -gAccel * (state.payloadPosX / rPayload); | |
const ay = -gAccel * (state.payloadPosY / rPayload); | |
// 3) Update velocity from gravitational acceleration | |
newState.payloadVelX = state.payloadVelX + ax * dt; | |
newState.payloadVelY = state.payloadVelY + ay * dt; | |
// 4) Update position | |
newState.payloadPosX = state.payloadPosX + newState.payloadVelX * dt; | |
newState.payloadPosY = state.payloadPosY + newState.payloadVelY * dt; | |
// Additional logic: if the payload is "close" to the tether tip, | |
// one might simulate a "grappling" event to attach the payload to the tether, | |
// or to impart velocity to the payload. This is highly simplified. | |
// Let's define "tetherTipPosX, tetherTipPosY" for the rotating tip. | |
const centerX = 0.0; | |
const centerY = R_EARTH + params.altitudeCenter; | |
const tipR = params.tetherLength / 2.0; | |
const tipAngle = newState.tetherAngle; | |
const tetherTipPosX = centerX + tipR * std.math.cos(tipAngle); | |
const tetherTipPosY = centerY + tipR * std.math.sin(tipAngle); | |
const dx = newState.payloadPosX - tetherTipPosX; | |
const dy = newState.payloadPosY - tetherTipPosY; | |
const distToTip = std.math.sqrt(dx * dx + dy * dy); | |
// If within capture distance, "hook" the payload | |
if (distToTip < 10.0) { | |
// Very simplistic: match velocity with tether tip | |
// Tether tip linear velocity: v_tip = cross(omega, radius) | |
// We can approximate as the rotational velocity | |
const tipSpeed = params.rotationRate * tipR; | |
// direction of tip velocity is tangential to the circle | |
// We'll attempt to align with that direction | |
// Tip tangential direction = rotate radial vector by 90 degrees | |
const vx = -tipSpeed * std.math.sin(tipAngle); | |
const vy = tipSpeed * std.math.cos(tipAngle); | |
// Impart that velocity to the payload | |
newState.payloadVelX = vx; | |
newState.payloadVelY = vy; | |
} | |
newState.time = state.time + dt; | |
return newState; | |
} | |
// Main simulation function | |
fn runSimulation(params: SkyhookParams, maxTime: f64) !SimResult { | |
// Validate parameters | |
try validateParams(params); | |
// Check tether tension vs. tensile strength | |
const tension = estimateTetherMaxTension(params); | |
// cross-sectional area is "1 m^2" in our simplistic code. So stress = T / A. | |
// Real designs must ensure the tether cross-sectional area is adequate to keep stress < tensileStrength. | |
if (tension > params.tensileStrength) { | |
return error.TetherWouldBreak; | |
} | |
// Initialize state | |
// We place the payload at 100km altitude for "pickup" | |
// i.e., at altitude = 100,000m from Earth's surface => R_EARTH + 100,000 | |
// Start it stationary w.r.t Earth for demonstration (or we can give it some suborbital velocity). | |
var state = State{ | |
.time = 0.0, | |
.tetherAngle = 0.0, | |
.payloadPosX = 0.0, | |
.payloadPosY = R_EARTH + 100_000.0, | |
.payloadVelX = 0.0, | |
.payloadVelY = 0.0, | |
}; | |
var result = SimResult{ | |
.states = std.ArrayList(State).init(std.heap.page_allocator), | |
}; | |
// Reserve memory to avoid frequent reallocations | |
try result.states.ensureCapacity(@as(usize, maxTime / params.timeStep) + 10); | |
// Main loop | |
while (state.time < maxTime) { | |
// Record current state | |
try result.states.append(state); | |
// Step simulation | |
state = stepSimulation(state, params); | |
} | |
return result; | |
} | |
// Example usage | |
pub fn main() !void { | |
const params = SkyhookParams{ | |
.tetherLength = 100_000.0, // 100 km tether | |
.altitudeCenter = 300_000.0, // Tether center 300 km above Earth's surface | |
.tetherDensity = 1_450.0, // ~ Kevlar density (kg/m^3) | |
.tensileStrength = 3.6e9, // ~ Kevlar (Pa) | |
.rotationRate = 0.001, // rad/s (small rotation for example) | |
.payloadMass = 1000.0, // 1 tonne payload | |
.timeStep = 0.5, // 0.5 s step | |
}; | |
// Run for, say, 12 hours to see what happens | |
var simResult = try runSimulation(params, 12.0 * 3600.0); | |
// Print a few lines of results | |
for (simResult.states.items) |state, i| { | |
if (i % 1000 == 0) { | |
std.debug.print( | |
"t={}s, tetherAngle={}, payloadPos=({},{})\n", | |
.{ state.time, state.tetherAngle, state.payloadPosX, state.payloadPosY } | |
); | |
} | |
} | |
// In a more advanced code, you'd check final payload velocity | |
// and see if it is approaching Earth escape or a lunar transfer orbit, etc. | |
// That portion would require additional orbital mechanics steps | |
// such as computing orbital elements, verifying injection conditions, etc. | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment