Last active
August 29, 2015 14:01
-
-
Save chrisdembia/fb546144f64275bcdead to your computer and use it in GitHub Desktop.
ee364a_hw4_prob5p13.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import numpy.matlib as ml | |
# data for censored fitting problem. | |
np.random.seed(0) | |
n = 20 # dimension of x's | |
M = 25 # number of non-censored data points | |
K = 100 # total number of points | |
c_true = ml.randn(n, 1) | |
X_unsorted = ml.randn(n, K) | |
y_unsorted = X_unsorted.T * c_true + 0.1 * np.sqrt(n) * ml.randn(K, 1) | |
# Reorder measurements, then censor | |
sort_ind = np.argsort(y_unsorted, 0) | |
y = y_unsorted[sort_ind, 0] | |
X = X_unsorted[:, sort_ind] | |
D = 0.5 * (y[M - 1] + y[M]) | |
y = y[0:M] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# In[34]: | |
from cvxpy import * | |
from cens_fit_data import * | |
#from numpy.linalg import norm | |
# In[35]: | |
c = Variable(n) | |
y_cens = Variable(K - M) | |
constraints = [y_cens >= D] | |
# In[36]: | |
uncensored_error = sum(square(y - X[:, 0:M].T * c)) | |
censored_error = sum(square(y_cens - X[:, M::].T * c)) | |
objective = Minimize(uncensored_error + censored_error) | |
problem_with_censored = Problem(objective, constraints) | |
problem_with_censored.solve() | |
#print('c Error when including censored data: {}'.format(np.linalg.norm(c_true - c.value) / np.linalg.norm(c_true))) | |
# In[28]: | |
error = norm2(vstack(y, y_cens) - X.T * c) | |
objective = Minimize(error) | |
problem_with_censored = Problem(objective, constraints) | |
problem_with_censored.solve(solver=CVXOPT) | |
# In[36]: | |
uncensored_error = (y - X[:, 0:M].T * c).T * (y - X[:, 0:M].T * c) | |
censored_error = (y_cens - X[:, M::].T * c).T * (y_cens - X[:, M::].T * c) | |
objective = Minimize(uncensored_error + censored_error) | |
problem_with_censored = Problem(objective, constraints) | |
problem_with_censored.solve() | |
# In[ ]: | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment