Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save chrisdone-artificial/b4f10e10e30d595d9cdf32cd51818738 to your computer and use it in GitHub Desktop.
Save chrisdone-artificial/b4f10e10e30d595d9cdf32cd51818738 to your computer and use it in GitHub Desktop.
attempts to add polytypes to lambda
-- original from <https://www.cs.ox.ac.uk/projects/gip/school/tc.hs> but URLs don't last long in academia
--
{-# LANGUAGE ExistentialQuantification,GADTs,TypeOperators #-}
-- This typechecker, written by Stephanie Weirich at Dagstuhl (Sept 04)
-- demonstrates that it's possible to write functions of type
-- tc :: String -> Term a
-- where Term a is our strongly-typed GADT.
-- That is, generate a typed term from an untyped source; Lennart
-- Augustsson set this as a challenge.
--
-- In fact the main function goes
-- tc :: UTerm -> exists ty. (Ty ty, Term ty)
-- so the type checker returns a pair of an expression and its type,
-- wrapped, of course, in an existential.
module Main where
import Data.Typeable
-- Untyped world --------------------------------------------
data UTerm = UVar String
| ULam String UType UTerm
| UApp UTerm UTerm
| UConBool Bool
| UIf UTerm UTerm UTerm
| UTLam String UTerm
| UTApp UTerm UType
data UType = UBool | UArr UType UType | UVarTy String
-- Type to term functions
data t :-> a
data Type
-- Typed world -----------------------------------------------
data Ty t where
Bool :: Ty Bool
Arr :: Ty a -> Ty b -> Ty (a -> b)
Type :: String -> Ty Type
TypeVar :: String -> Var g t -> Ty t
instance Show (Ty t) where show = showType
data Term g t where
Var :: Var g t -> Term g t
Lam :: Ty a -> Term (g,a) b -> Term g (a->b)
App :: Term g (s -> t) -> Term g s -> Term g t
ConBool :: Bool -> Term g Bool
If :: Term g Bool -> Term g a -> Term g a -> Term g a
TypeTerm :: Ty a -> Term g Type
data Var g t where
ZVar :: Var (h,t) t
SVar :: Var h t -> Var (h,s) t
deriving instance Eq (Var g t)
instance Show (Var g t) where
show v = "v" ++ show (go v) where
go :: forall g t. Var g t -> Int
go ZVar = 0
go (SVar v) = 1 + go v
data Typed thing = forall ty. Typed (Ty ty) (thing ty)
-- Typechecking types
data ExType = forall t. ExType (Ty t)
tcType :: TyEnv g -> UType -> ExType
tcType e (UVarTy s) = case lookupVar s e of Typed t v -> ExType $ TypeVar s v
tcType _ UBool = ExType Bool
tcType e (UArr t1 t2) = case tcType e t1 of { ExType t1' ->
case tcType e t2 of { ExType t2' ->
ExType (Arr t1' t2') }}
-- The type environment and lookup
data TyEnv g where
Nil :: TyEnv g
Cons :: String -> Ty t -> TyEnv h -> TyEnv (h,t)
lookupVar :: String -> TyEnv g -> Typed (Var g)
lookupVar _ Nil = error "Variable not found"
lookupVar v (Cons s ty e)
| v==s = Typed ty ZVar
| otherwise = case lookupVar v e of
Typed ty v -> Typed ty (SVar v)
data Equal a b where
Equal :: Equal c c
cmpTy :: Ty a -> Ty b -> Maybe (Equal a b)
cmpTy Bool Bool = Just Equal
cmpTy (Type s) (Type t) | s == t = Just Equal | otherwise = Nothing
cmpTy (TypeVar s v) (TypeVar t v') = do
undefined
cmpTy (Arr a1 a2) (Arr b1 b2)
= do { Equal <- cmpTy a1 b1
; Equal <- cmpTy a2 b2
; return Equal }
cmpTy a b = error $ "cmpTy: " ++ show (a,b)
-- Typechecking terms
tc :: UTerm -> TyEnv g -> Typed (Term g)
tc (UVar v) env = case lookupVar v env of
Typed ty v -> Typed ty (Var v)
tc (UConBool b) env
= Typed Bool (ConBool b)
tc (ULam s ty body) env
= case tcType env ty of { ExType bndr_ty' ->
case tc body (Cons s bndr_ty' env) of { Typed body_ty' body' ->
Typed (Arr bndr_ty' body_ty')
(Lam bndr_ty' body') }}
tc (UApp e1 e2) env
= case tc e1 env of { Typed (Arr bndr_ty body_ty) e1' ->
case tc e2 env of { Typed arg_ty e2' ->
case cmpTy arg_ty bndr_ty of
Nothing -> error "Type error"
Just Equal -> Typed body_ty (App e1' e2') }}
tc (UIf e1 e2 e3) env
= case tc e1 env of { Typed Bool e1' ->
case tc e2 env of { Typed t2 e2' ->
case tc e3 env of { Typed t3 e3' ->
case cmpTy t2 t3 of
Nothing -> error "Type error"
Just Equal -> Typed t2 (If e1' e2' e3') }}}
tc (UTLam s body) env
= let bndr_ty' = Type s in
case tc body (Cons s bndr_ty' env) of { Typed body_ty' body' ->
Typed (Arr bndr_ty' body_ty')
(Lam bndr_ty' body') }
tc (UTApp e1 arg_ty) env
= case tcType env arg_ty of
ExType arg_ty' ->
case tc e1 env of { Typed t1'@(Arr (Type s) _) e1' ->
instantiate t1' e1' s arg_ty'
}
instantiate :: forall a b g. Ty (Type -> a) -> Term g (Type -> a) -> String -> Ty b -> Typed (Term g)
instantiate (Arr Type{} ty') e arg_name arg = go ty' (App e (TypeTerm arg)) where
go :: forall x. Ty x -> Term g x -> Typed (Term g)
go t (Lam ty e) = Typed (subst arg_name arg t) (Lam (subst arg_name arg ty) (substE arg_name arg ty e)
go t ex = Typed t ex
subst :: String -> Ty a -> Ty b -> ExType
subst = ...
showType :: Ty a -> String
showType (TypeVar s v) = s
showType Bool = "Bool"
showType (Type v) = "(" ++ show v ++ " :: Type)"
showType (Arr t1 t2) = "(" ++ showType t1 ++ ") -> (" ++ showType t2 ++ ")"
uNot = ULam "x" UBool (UIf (UVar "x") (UConBool False) (UConBool True))
uId = UTLam "t" (ULam "x" (UVarTy "t") (UVar "x"))
testId = UApp (UTApp uId UBool) (UConBool True)
test :: UTerm
test = UApp uNot (UConBool True)
main = putStrLn (case tc testId Nil of
Typed ty _ -> showType ty
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment