Created
March 7, 2024 10:00
-
-
Save chrishanretty/38f9eca5d26d9df921c26a8c17371403 to your computer and use it in GitHub Desktop.
breakfast analysis
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(rstan) | |
library(cmdstanr) | |
dat <- read.delim("data_attractiveness_juge_results.csv") | |
### Set subject IDs using the same factor levels | |
subject_levels <- unique(c(dat$ID_left, | |
dat$ID_right)) | |
dat <- dat |> | |
mutate(ID_left = factor(ID_left, | |
levels = subject_levels), | |
ID_right = factor(ID_right, | |
levels = subject_levels), | |
ID_left.num = as.numeric(ID_left), | |
ID_right.num = as.numeric(ID_right)) | |
### | |
dat <- dat |> | |
mutate(ID_juge.num = as.numeric(factor(ID_juge))) | |
## Set up for stan | |
stan_data <- list(y = dat$score_attractiveness_left, | |
x = dat$diff_breakfast_type, | |
id_l = dat$ID_left.num, | |
id_r = dat$ID_right.num, | |
id_j = dat$ID_juge.num, | |
n_subjects = length(subject_levels), | |
n_judges = max(dat$ID_juge.num), | |
n_obs = nrow(dat)) | |
stan_code <- ' | |
data { | |
int<lower=0> n_subjects; | |
int<lower=0> n_judges; | |
int<lower=0> n_obs; | |
array[n_obs] int<lower=1, upper=n_subjects> id_l; | |
array[n_obs] int<lower=1, upper=n_subjects> id_r; | |
array[n_obs] int<lower=1, upper=n_judges> id_j; | |
array[n_obs] int<lower=0, upper=1> y; | |
array[n_obs] int<lower=-1, upper=1> x; | |
} | |
parameters { | |
vector [n_subjects] theta; | |
vector [n_judges] kappa; | |
real beta; | |
real alpha; | |
} | |
model { | |
theta ~ std_normal(); | |
kappa ~ std_normal(); | |
for (i in 1:n_obs){ | |
y[i] ~ bernoulli_logit(alpha + beta * x[i] + theta[id_l[i]] - theta[id_r[i]] + kappa[id_j[i]]); | |
} | |
} | |
' | |
writeLines(stan_code, con = "breakfast.stan") | |
model <- cmdstanr::cmdstan_model(stan_file = 'breakfast.stan') | |
fit <- model$sample(data = stan_data, | |
parallel_chains = 4, | |
chains = 4, | |
seed = 2408) | |
s <- fit$summary() | |
s |> filter(variable == "beta") | |
# A tibble: 1 × 10 | |
## variable mean median sd mad q5 q95 rhat ess_bulk ess_tail | |
## <chr> <num> <num> <num> <num> <num> <num> <num> <num> <num> | |
## 1 beta -0.489 -0.487 0.200 0.198 -0.816 -0.166 1.00 897. 1479. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment