Created
July 11, 2024 18:50
-
-
Save chrishavlin/2f35a474d6c30602c3ad5ecb0ccc5578 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function manual_lau_holtzman_fig2() | |
% recreate fig 2 of lau and holtzman 2019 grl | |
% https://doi.org/10.1029/2019GL083529 | |
beta = 1e-4 | |
alf = 1/3 | |
Mu_in = 60*1e9; | |
eta_ss = 1.8922e+21; | |
tau_M = eta_ss / Mu_in; | |
f = logspace(-15,1, 100); | |
w = 2 * pi * f; | |
% andrade | |
M_real = 1 + beta * gamma(1+alf) * cos(alf * pi /2) ./ (w.^alf); | |
M_imag = 1. ./ (w .* tau_M) + beta * gamma(1+alf)*sin(alf*pi/2)./(w.^alf); | |
M_fac = M_real - i * M_imag; | |
M_complex = Mu_in ./ M_fac; | |
[and_Qinv, and_eta_app, and_eta_normalized] = get_complex_visc(M_complex, tau_M, eta_ss, w,0); | |
% burgers | |
eta_t = eta_ss/10; | |
M_t = Mu_in * 0.8; | |
M_complex = i * w * eta_ss .* (1 + i * w * eta_t/M_t); | |
eta_fac = eta_ss / M_t + eta_ss/Mu_in + eta_t / M_t + i * w * eta_ss * eta_t / (Mu_in * M_t); | |
M_complex = M_complex ./ (1 + i * w .* eta_fac); | |
[burg_Qinv, burg_eta_app, burg_eta_normalized] = get_complex_visc(M_complex, tau_M, eta_ss, w,1); | |
% maxwell | |
M_complex = i * w * eta_ss ./ (1 + i * w * tau_M); | |
[mxwl_Qinv, mxwl_eta_app, mxwl_eta_normalized] = get_complex_visc(M_complex, tau_M, eta_ss, w,1); | |
% Zener | |
M_complex = Mu_in * M_t / (Mu_in + M_t) * (1 + i*w*eta_t/M_t); | |
M_complex = M_complex ./ (1 + i * w * eta_t / (Mu_in + M_t)); | |
[z_Qinv, z_eta_app, z_eta_normalized] = get_complex_visc(M_complex, tau_M, eta_ss, w,1); | |
tau_f = 1./ tau_M; | |
figure() | |
subplot(3,1,1) | |
f_axis = f; | |
loglog(f_axis, mxwl_eta_app, 'linewidth', 1.0,'displayname', 'maxwell') | |
hold on | |
loglog(f_axis, and_eta_app,'r', 'linewidth', 1.0,'displayname', 'andrade') | |
loglog(f_axis, burg_eta_app,'m', 'linewidth', 1.0,'displayname', 'burger') | |
loglog(f_axis, z_eta_app,'--k', 'linewidth', 1.0,'displayname', 'zener') | |
loglog([tau_f, tau_f], [1e12,1e24],'--k', 'displayname', 'f_M') | |
ylim([1e12,1e24]) | |
ylabel('||\eta*||') | |
xlim([1e-13,10]) | |
legend() | |
subplot(3,1,2) | |
loglog(f_axis, mxwl_Qinv, 'linewidth', 1.0,'displayname', 'maxwell') | |
hold on | |
loglog(f_axis, and_Qinv, 'r', 'linewidth', 1.0,'displayname', 'andrade') | |
loglog(f_axis, burg_Qinv,'m', 'linewidth', 1.0,'displayname', 'burger') | |
loglog(f_axis, z_Qinv,'--k', 'linewidth', 1.0,'displayname', 'zener') | |
loglog([tau_f, tau_f], [1e-8,1e4],'--k') | |
ylabel('Q^{-1}') | |
xlim([1e-13,10]) | |
ylim([1e-8,1e4]) | |
subplot(3,1,3) | |
semilogx(f_axis, mxwl_eta_normalized, 'linewidth', 1.0,'displayname', 'maxwell') | |
hold on | |
semilogx(f_axis, and_eta_normalized, 'r', 'linewidth', 1.0,'displayname', 'andrade') | |
semilogx(f_axis, burg_eta_normalized,'m', 'linewidth', 1.0,'displayname', 'burger') | |
semilogx(f_axis, z_eta_normalized, '--k', 'linewidth', 1.0,'displayname', 'zener') | |
semilogx([tau_f, tau_f], [0, 1.5],'--k') | |
semilogx([f_axis(1), f_axis(end)], [1,1],'--k') | |
ylabel('normalized ||{\eta}*||') | |
xlabel('f [Hz]') | |
xlim([1e-13,10]) | |
ylim([0, 1.5]) | |
end | |
function [Qinv, eta_app, eta_normalized] = get_complex_visc(M_complex, tau_M, eta_ss, w, use_Q_fac) | |
M1 = real(M_complex); | |
M2 = imag(M_complex); | |
J1 = real(1. ./ M_complex); | |
J2 = imag(1. ./ M_complex); | |
if use_Q_fac == 1 | |
M1_M2_fac = (1 + sqrt(1+(M2./M1).^2)) / 2; | |
else | |
M1_M2_fac = 1.0; | |
end | |
Qinv = (M2./M1) ./ M1_M2_fac; | |
% complex compliance | |
J = J1 + i * J2; | |
% complex modulus | |
M = 1./J; | |
% complex viscosity | |
eta_star= -i .* (1 ./ w) .* M; % complex viscosity | |
% apparent viscosity | |
eta_app = abs(eta_star); | |
% complex maxwell viscosity | |
eta_maxwell = ( eta_ss ./ (1 + i * w * tau_M)); | |
% maxwell-normalized apparent viscosity | |
eta_normalized = abs(eta_star) ./ abs(eta_maxwell); | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment