Last active
April 30, 2018 00:37
-
-
Save christianscott/d52d1e3b252580a81b09dec38d1bddc8 to your computer and use it in GitHub Desktop.
Covariance and Correlation in Javascript
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function sum(xs) { | |
return xs.reduce((total, x) => total + x, 0) | |
} | |
function mean(xs) { | |
return sum(xs) / xs.length | |
} | |
function zip(xs, ys) { | |
return range(xs.length) | |
.reduce((arr, i) => [...arr, [xs[i], ys[i]]], []) | |
} | |
function range(start, end) { | |
if (end == null) { | |
end = start | |
start = 0 | |
} | |
return new Array(end - start).fill().map((_, i) => i + start) | |
} | |
function stdev(xs) { | |
const xhat = mean(xs) | |
const squareDistances = xs.map(x => Math.pow(x - xhat, 2)) | |
return Math.sqrt(sum(squareDistances) / (xs.length - 1)) | |
} | |
function covariance(xs, ys) { | |
const xhat = mean(xs) | |
const yhat = mean(ys) | |
const total = sum(zip(xs, ys).map(([x, y]) => (x - xhat) * (y - yhat))) | |
return total / (xs.length - 1) | |
} | |
function correlation(xs, ys) { | |
return covariance(xs, ys) / (stdev(xs) * stdev(ys)) | |
} | |
const xs = [1, 2, 3, 4, 5] | |
console.log(stdev(xs)) // 1.5811388300841898 | |
const ys = [1, 2, 3, 4, 5] | |
console.log(covariance(xs, ys)) // 2.5 | |
console.log(correlation(xs, ys)) // 0.9999999999999998 | |
function rand(size) { | |
return range(size).map(() => Math.random() * size) | |
} | |
console.log(correlation(rand(100), rand(100))) // (very small +ve/-ve number) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment