#Simple Venn Layout Example of d3.layout.venn plugin.
Last active
July 18, 2016 07:55
-
-
Save christophe-g/517461e67a2aae17dd10 to your computer and use it in GitHub Desktop.
Simple Venn Layout
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(function (global, factory) { | |
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : | |
typeof define === 'function' && define.amd ? define('d3-venn', ['exports'], factory) : | |
factory((global.d3_venn = {})); | |
}(this, function (exports) { 'use strict'; | |
/** | |
* getSet creates a getter/setter function for a re-usable D3.js component. | |
* | |
* @method getSet | |
* @param {string} option - the name of the object in the string you want agetter/setter for. | |
* @param {function} component - the D3 component this getter/setter relates to. | |
* | |
* @return {mixed} The value of the option or the component. | |
*/ | |
function getSet(option, component) { | |
return function(_) { | |
if (! arguments.length) { | |
return this[option]; | |
} | |
this[option] = _; | |
return component; | |
}; | |
} | |
function applier(component, options) { | |
for (var key in options) { | |
if(component[key] && (typeof component[key] == "function")) { | |
component[key](options[key]); | |
} | |
} | |
return component; | |
} | |
function binder(component, options) { | |
for (var key in options) { | |
if(!component[key]) { | |
component[key] = getSet(key, component).bind(options); | |
} | |
} | |
} | |
// import distance from | |
const SMALL = 1e-10; | |
/** Returns the intersection area of a bunch of circles (where each circle | |
is an object having an x,y and radius property) */ | |
function intersectionArea(circles, stats) { | |
// get all the intersection points of the circles | |
var intersectionPoints = getIntersectionPoints(circles); | |
// filter out points that aren't included in all the circles | |
var innerPoints = intersectionPoints.filter(function(p) { | |
return containedInCircles(p, circles); | |
}); | |
var arcArea = 0, | |
polygonArea = 0, | |
arcs = [], | |
i; | |
// if we have intersection points that are within all the circles, | |
// then figure out the area contained by them | |
if (innerPoints.length > 1) { | |
// sort the points by angle from the center of the polygon, which lets | |
// us just iterate over points to get the edges | |
var center = getCenter(innerPoints); | |
for (i = 0; i < innerPoints.length; ++i) { | |
var p = innerPoints[i]; | |
p.angle = Math.atan2(p.x - center.x, p.y - center.y); | |
} | |
innerPoints.sort(function(a, b) { | |
return b.angle - a.angle; | |
}); | |
// iterate over all points, get arc between the points | |
// and update the areas | |
var p2 = innerPoints[innerPoints.length - 1]; | |
for (i = 0; i < innerPoints.length; ++i) { | |
var p1 = innerPoints[i]; | |
// polygon area updates easily ... | |
polygonArea += (p2.x + p1.x) * (p1.y - p2.y); | |
// updating the arc area is a little more involved | |
var midPoint = { | |
x: (p1.x + p2.x) / 2, | |
y: (p1.y + p2.y) / 2 | |
}, | |
arc = null; | |
for (var j = 0; j < p1.parentIndex.length; ++j) { | |
if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) { | |
// figure out the angle halfway between the two points | |
// on the current circle | |
var circle = circles[p1.parentIndex[j]], | |
a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y), | |
a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y); | |
var angleDiff = (a2 - a1); | |
if (angleDiff < 0) { | |
angleDiff += 2 * Math.PI; | |
} | |
// and use that angle to figure out the width of the | |
// arc | |
var a = a2 - angleDiff / 2, | |
width = distance(midPoint, { | |
x: circle.x + circle.radius * Math.sin(a), | |
y: circle.y + circle.radius * Math.cos(a) | |
}); | |
// pick the circle whose arc has the smallest width | |
if ((arc === null) || (arc.width > width)) { | |
arc = { | |
circle: circle, | |
width: width, | |
p1: p1, | |
p2: p2 | |
}; | |
} | |
} | |
} | |
arcs.push(arc); | |
arcArea += circleArea(arc.circle.radius, arc.width); | |
p2 = p1; | |
} | |
} else { | |
// no intersection points, is either disjoint - or is completely | |
// overlapped. figure out which by examining the smallest circle | |
var smallest = circles[0]; | |
for (i = 1; i < circles.length; ++i) { | |
if (circles[i].radius < smallest.radius) { | |
smallest = circles[i]; | |
} | |
} | |
// make sure the smallest circle is completely contained in all | |
// the other circles | |
var disjoint = false; | |
for (i = 0; i < circles.length; ++i) { | |
if (distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) { | |
disjoint = true; | |
break; | |
} | |
} | |
if (disjoint) { | |
arcArea = polygonArea = 0; | |
} else { | |
arcArea = smallest.radius * smallest.radius * Math.PI; | |
arcs.push({ | |
circle: smallest, | |
p1: { | |
x: smallest.x, | |
y: smallest.y + smallest.radius | |
}, | |
p2: { | |
x: smallest.x - SMALL, | |
y: smallest.y + smallest.radius | |
}, | |
width: smallest.radius * 2 | |
}); | |
} | |
} | |
polygonArea /= 2; | |
if (stats) { | |
stats.area = arcArea + polygonArea; | |
stats.arcArea = arcArea; | |
stats.polygonArea = polygonArea; | |
stats.arcs = arcs; | |
stats.innerPoints = innerPoints; | |
stats.intersectionPoints = intersectionPoints; | |
} | |
return arcArea + polygonArea; | |
} | |
/** returns whether a point is contained by all of a list of circles */ | |
function containedInCircles(point, circles) { | |
for (var i = 0; i < circles.length; ++i) { | |
if (distance(point, circles[i]) > circles[i].radius + SMALL) { | |
return false; | |
} | |
} | |
return true; | |
} | |
/** Gets all intersection points between a bunch of circles */ | |
function getIntersectionPoints(circles) { | |
var ret = []; | |
for (var i = 0; i < circles.length; ++i) { | |
for (var j = i + 1; j < circles.length; ++j) { | |
var intersect = circleCircleIntersection(circles[i], | |
circles[j]); | |
for (var k = 0; k < intersect.length; ++k) { | |
var p = intersect[k]; | |
p.parentIndex = [i, j]; | |
ret.push(p); | |
} | |
} | |
} | |
return ret; | |
} | |
function circleIntegral(r, x) { | |
var y = Math.sqrt(r * r - x * x); | |
return x * y + r * r * Math.atan2(x, y); | |
} | |
/** Returns the area of a circle of radius r - up to width */ | |
function circleArea(r, width) { | |
return circleIntegral(r, width - r) - circleIntegral(r, -r); | |
} | |
/** euclidean distance between two points */ | |
function distance(p1, p2) { | |
return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) + | |
(p1.y - p2.y) * (p1.y - p2.y)); | |
} | |
/** Returns the overlap area of two circles of radius r1 and r2 - that | |
have their centers separated by distance d. Simpler faster | |
circle intersection for only two circles */ | |
function circleOverlap(r1, r2, d) { | |
// no overlap | |
if (d >= r1 + r2) { | |
return 0; | |
} | |
// completely overlapped | |
if (d <= Math.abs(r1 - r2)) { | |
return Math.PI * Math.min(r1, r2) * Math.min(r1, r2); | |
} | |
var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d), | |
w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d); | |
return circleArea(r1, w1) + circleArea(r2, w2); | |
} | |
/** Given two circles (containing a x/y/radius attributes), | |
returns the intersecting points if possible. | |
note: doesn't handle cases where there are infinitely many | |
intersection points (circles are equivalent):, or only one intersection point*/ | |
function circleCircleIntersection(p1, p2) { | |
var d = distance(p1, p2), | |
r1 = p1.radius, | |
r2 = p2.radius; | |
// if to far away, or self contained - can't be done | |
if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) { | |
return []; | |
} | |
var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d), | |
h = Math.sqrt(r1 * r1 - a * a), | |
x0 = p1.x + a * (p2.x - p1.x) / d, | |
y0 = p1.y + a * (p2.y - p1.y) / d, | |
rx = -(p2.y - p1.y) * (h / d), | |
ry = -(p2.x - p1.x) * (h / d); | |
return [{ | |
x: x0 + rx, | |
y: y0 - ry | |
}, { | |
x: x0 - rx, | |
y: y0 + ry | |
}]; | |
} | |
/** Returns the center of a bunch of points */ | |
function getCenter(points) { | |
var center = { | |
x: 0, | |
y: 0 | |
}; | |
for (var i = 0; i < points.length; ++i) { | |
center.x += points[i].x; | |
center.y += points[i].y; | |
} | |
center.x /= points.length; | |
center.y /= points.length; | |
return center; | |
} | |
//return true when the point is out of all circles | |
function outOfCircles(point, circles) { | |
for (var i = 0; i < circles.length; ++i) { | |
if (distance(point, circles[i]) < circles[i].radius + SMALL) { | |
return false; | |
} | |
} | |
return true; | |
} | |
// function called from d3.layout.venn | |
// used to pack child nodes insiside inner circle of a venn set. | |
function pack(layout) { | |
// var valueFn = layout.value(); | |
var packingConfig = layout.packingConfig(); | |
layout.sets().forEach(function(k,set) { | |
// function pack(set, valueFn) { | |
var innerRadius = set.innerRadius, | |
center = set.center, | |
children = set.nodes, | |
x = center.x - innerRadius, | |
y = center.y - innerRadius; | |
applier(d3.layout.pack(), packingConfig) | |
.size([innerRadius * 2, innerRadius * 2]) | |
.nodes({ | |
children: children | |
}); | |
// translate the notes to the center | |
if (children) { | |
children.forEach(function(n) { | |
n.x += x; | |
n.y += y; | |
}); | |
} | |
}) | |
} | |
// function called from d3.layout.venn | |
// used to randomly distribute child nodes insiside a venn set. | |
// d3.layout.venn.packCircles looks prettier. | |
function distribute(layout) { | |
// var valueFn = layout.value(), | |
var circles = layout.circles(); | |
layout.sets().forEach(function(k,set) { | |
var queue = [], | |
maxAttempt = 500, | |
k, | |
inCircles = [], | |
outCircles = [], | |
center = set.center, | |
innerRadius = set.innerRadius; | |
for (k in circles) { | |
if (set.sets.indexOf(k) > -1) { | |
inCircles.push(circles[k]) | |
} else { | |
outCircles.push(circles[k]) | |
} | |
} | |
// distanceToCircles.set(set.__key, computeDistanceToCircles(set)) | |
set.nodes.map(function(n, i) { | |
var attempt = 0, | |
candidate = null; | |
if (i == 0) { // first node centered | |
n.x = center.x; | |
n.y = center.y; | |
queue.push(n) | |
} else { | |
while (!candidate && (attempt < maxAttempt)) { | |
var i = Math.random() * queue.length | 0, | |
s = queue[i], | |
a = 2 * Math.PI * Math.random(), | |
r = Math.sqrt(Math.random() * ((innerRadius * innerRadius) + (10 * 10))), | |
p = { | |
x: s.x + r * Math.cos(a), | |
y: s.y + r * Math.sin(a) | |
}; | |
attempt++; | |
if (containedInCircles(p, inCircles) && (outOfCircles(p, outCircles))) { | |
candidate = p; | |
queue.push(p) | |
} | |
} | |
if (!candidate) { | |
console.warn('NO CANDIDATE') | |
candidate = { | |
x: center.x, | |
y: center.y | |
} | |
} | |
n.x = candidate.x; | |
n.y = candidate.y; | |
// nodes.push(n); | |
} | |
}); | |
}) | |
} | |
// apply a d3.fore layout with foci on venn area center to set foci | |
// d3.layout.venn.packCircles looks prettier. | |
function force(layout, data) { | |
var force = layout.packer() | |
if (!force) { | |
force = d3.layout.force(); | |
binder(force, { | |
padding : 3, | |
maxRadius : 8, | |
collider : true, | |
ticker: null, | |
ender : null, | |
starter : null | |
}); | |
} | |
var packingConfig = layout.packingConfig(), | |
size = layout.size(), | |
sets = layout.sets(), | |
padding = force.padding(), // separation between nodes | |
maxRadius = force.maxRadius(), | |
collider = force.collider; | |
// foci = d3.map({}, function(d) { | |
// return d.__key__ | |
// }); | |
// layout.sets().forEach(function(set) { | |
// foci.set(set.__key__, set.center); | |
// }) | |
applier(force, packingConfig) | |
.nodes(data) | |
.links([]) | |
.gravity(0) | |
.charge(0) | |
.size(size) | |
.on('start', init) | |
.on('tick', tick) | |
var ender ; | |
if(ender = force.ender()) { | |
force.on('end', ender) | |
} | |
function init(e) { | |
data.forEach(function(d) { | |
var center = sets.get(d.__setKey__).center; | |
d.x = d.x ? d.x * 1 : center.x; | |
d.y = d.y ? d.y * 1 : center.y; | |
}) | |
var starter ; | |
if(starter = force.starter()) { | |
starter(layout) | |
} | |
} | |
function tick(e) { | |
var ticker; | |
data | |
.forEach(gravity(.2 * e.alpha)) | |
if(collider) { | |
data | |
.forEach(collide(.5)) | |
} | |
if (ticker = force.ticker()) { | |
ticker(layout) | |
} | |
} | |
// Move nodes toward cluster focus. | |
function gravity(alpha) { | |
return function(d) { | |
var center = sets.get(d.__setKey__).center; | |
d.y += (center.y - d.y) * alpha; | |
d.x += (center.x - d.x) * alpha; | |
}; | |
} | |
// Resolve collisions between nodes. | |
function collide(alpha) { | |
var quadtree = d3.geom.quadtree(data); | |
return function(d) { | |
var r = d.r + maxRadius + padding, | |
nx1 = d.x - r, | |
nx2 = d.x + r, | |
ny1 = d.y - r, | |
ny2 = d.y + r; | |
quadtree.visit(function(quad, x1, y1, x2, y2) { | |
if (quad.point && (quad.point !== d)) { | |
var x = d.x - quad.point.x, | |
y = d.y - quad.point.y, | |
l = Math.sqrt(x * x + y * y), | |
r = d.r + quad.point.r + (d.__setKey__ !== quad.point.__setKey__) * padding; | |
if (l < r) { | |
l = (l - r) / l * alpha; | |
d.x -= x *= l; | |
d.y -= y *= l; | |
quad.point.x += x; | |
quad.point.y += y; | |
} | |
} | |
return x1 > nx2 || x2 < nx1 || y1 > ny2 || y2 < ny1; | |
}); | |
}; | |
} | |
return force; | |
} | |
/** finds the zeros of a function, given two starting points (which must | |
* have opposite signs */ | |
function bisect (f, a, b, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || 100, | |
tolerance = parameters.tolerance || 1e-10, | |
fA = f(a), | |
fB = f(b), | |
delta = b - a; | |
if (fA * fB > 0) { | |
throw "Initial bisect points must have opposite signs"; | |
} | |
if (fA === 0) return a; | |
if (fB === 0) return b; | |
for (var i = 0; i < maxIterations; ++i) { | |
delta /= 2; | |
var mid = a + delta, | |
fMid = f(mid); | |
if (fMid * fA >= 0) { | |
a = mid; | |
} | |
if ((Math.abs(delta) < tolerance) || (fMid === 0)) { | |
return mid; | |
} | |
} | |
return a + delta; | |
} | |
// need some basic operations on vectors, rather than adding a dependency, | |
// just define here | |
function zeros(x) { | |
var r = new Array(x); | |
for (var i = 0; i < x; ++i) { | |
r[i] = 0; | |
} | |
return r; | |
} | |
function zerosM(x, y) { | |
return zeros(x).map(function() { | |
return zeros(y); | |
}); | |
} | |
function dot(a, b) { | |
var ret = 0; | |
for (var i = 0; i < a.length; ++i) { | |
ret += a[i] * b[i]; | |
} | |
return ret; | |
} | |
function norm2(a) { | |
return Math.sqrt(dot(a, a)); | |
} | |
function multiplyBy(a, c) { | |
for (var i = 0; i < a.length; ++i) { | |
a[i] *= c; | |
} | |
} | |
function weightedSum(ret, w1, v1, w2, v2) { | |
for (var j = 0; j < ret.length; ++j) { | |
ret[j] = w1 * v1[j] + w2 * v2[j]; | |
} | |
} | |
/** minimizes a function using the downhill simplex method */ | |
function fmin(f, x0, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || x0.length * 200, | |
nonZeroDelta = parameters.nonZeroDelta || 1.1, | |
zeroDelta = parameters.zeroDelta || 0.001, | |
minErrorDelta = parameters.minErrorDelta || 1e-6, | |
rho = parameters.rho || 1, | |
chi = parameters.chi || 2, | |
psi = parameters.psi || -0.5, | |
sigma = parameters.sigma || 0.5, | |
callback = parameters.callback, | |
temp; | |
// initialize simplex. | |
var N = x0.length, | |
simplex = new Array(N + 1); | |
simplex[0] = x0; | |
simplex[0].fx = f(x0); | |
for (var i = 0; i < N; ++i) { | |
var point = x0.slice(); | |
point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta; | |
simplex[i + 1] = point; | |
simplex[i + 1].fx = f(point); | |
} | |
var sortOrder = function(a, b) { | |
return a.fx - b.fx; | |
}; | |
var centroid = x0.slice(), | |
reflected = x0.slice(), | |
contracted = x0.slice(), | |
expanded = x0.slice(); | |
for (var iteration = 0; iteration < maxIterations; ++iteration) { | |
simplex.sort(sortOrder); | |
if (callback) { | |
callback(simplex); | |
} | |
if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) { | |
break; | |
} | |
// compute the centroid of all but the worst point in the simplex | |
for (i = 0; i < N; ++i) { | |
centroid[i] = 0; | |
for (var j = 0; j < N; ++j) { | |
centroid[i] += simplex[j][i]; | |
} | |
centroid[i] /= N; | |
} | |
// reflect the worst point past the centroid and compute loss at reflected | |
// point | |
var worst = simplex[N]; | |
weightedSum(reflected, 1 + rho, centroid, -rho, worst); | |
reflected.fx = f(reflected); | |
// if the reflected point is the best seen, then possibly expand | |
if (reflected.fx <= simplex[0].fx) { | |
weightedSum(expanded, 1 + chi, centroid, -chi, worst); | |
expanded.fx = f(expanded); | |
if (expanded.fx < reflected.fx) { | |
temp = simplex[N]; | |
simplex[N] = expanded; | |
expanded = temp; | |
} else { | |
temp = simplex[N]; | |
simplex[N] = reflected; | |
reflected = temp; | |
} | |
} | |
// if the reflected point is worse than the second worst, we need to | |
// contract | |
else if (reflected.fx >= simplex[N - 1].fx) { | |
var shouldReduce = false; | |
if (reflected.fx <= worst.fx) { | |
// do an inside contraction | |
weightedSum(contracted, 1 + psi, centroid, -psi, worst); | |
contracted.fx = f(contracted); | |
if (contracted.fx < worst.fx) { | |
temp = simplex[N]; | |
simplex[N] = contracted; | |
contracted = temp; | |
} else { | |
shouldReduce = true; | |
} | |
} else { | |
// do an outside contraction | |
weightedSum(contracted, 1 - psi * rho, centroid, psi * rho, worst); | |
contracted.fx = f(contracted); | |
if (contracted.fx <= reflected.fx) { | |
temp = simplex[N]; | |
simplex[N] = contracted; | |
contracted = temp; | |
} else { | |
shouldReduce = true; | |
} | |
} | |
if (shouldReduce) { | |
// do reduction. doesn't actually happen that often | |
for (i = 1; i < simplex.length; ++i) { | |
weightedSum(simplex[i], 1 - sigma, simplex[0], sigma - 1, simplex[i]); | |
simplex[i].fx = f(simplex[i]); | |
} | |
} | |
} else { | |
temp = simplex[N]; | |
simplex[N] = reflected; | |
reflected = temp; | |
} | |
} | |
simplex.sort(sortOrder); | |
return { | |
f: simplex[0].fx, | |
solution: simplex[0] | |
}; | |
} | |
function minimizeConjugateGradient( f, initial, params) { | |
// allocate all memory up front here, keep out of the loop for perfomance | |
// reasons | |
var current = { | |
x: initial.slice(), | |
fx: 0, | |
fxprime: initial.slice() | |
}, | |
next = { | |
x: initial.slice(), | |
fx: 0, | |
fxprime: initial.slice() | |
}, | |
yk = initial.slice(), | |
pk, temp, | |
a = 1, | |
maxIterations; | |
params = params || {}; | |
maxIterations = params.maxIterations || initial.length * 5; | |
current.fx = f(current.x, current.fxprime); | |
pk = current.fxprime.slice(); | |
multiplyBy(pk, -1); | |
for (var i = 0; i < maxIterations; ++i) { | |
if (params.history) { | |
params.history.push({ | |
x: current.x.slice(), | |
fx: current.fx, | |
fxprime: current.fxprime.slice() | |
}); | |
} | |
a = wolfeLineSearch(f, pk, current, next, a); | |
if (!a) { | |
// faiiled to find point that satifies wolfe conditions. | |
// reset direction for next iteration | |
for (var j = 0; j < pk.length; ++j) { | |
pk[j] = -1 * current.fxprime[j]; | |
} | |
} else { | |
// update direction using Polak–Ribiere CG method | |
weightedSum(yk, 1, next.fxprime, -1, current.fxprime); | |
var delta_k = dot(current.fxprime, current.fxprime), | |
beta_k = Math.max(0, dot(yk, next.fxprime) / delta_k); | |
weightedSum(pk, beta_k, pk, -1, next.fxprime); | |
temp = current; | |
current = next; | |
next = temp; | |
} | |
if (norm2(current.fxprime) <= 1e-5) { | |
break; | |
} | |
} | |
if (params.history) { | |
params.history.push({ | |
x: current.x.slice(), | |
fx: current.fx, | |
fxprime: current.fxprime.slice() | |
}); | |
} | |
return current; | |
} | |
var c1 = 1e-6; | |
var c2 = 0.1; | |
/// searches along line 'pk' for a point that satifies the wolfe conditions | |
/// See 'Numerical Optimization' by Nocedal and Wright p59-60 | |
function wolfeLineSearch( f, pk, current, next, a) { | |
var phi0 = current.fx, | |
phiPrime0 = dot(current.fxprime, pk), | |
phi = phi0, | |
phi_old = phi0, | |
phiPrime = phiPrime0, | |
a0 = 0; | |
a = a || 1; | |
function zoom(a_lo, a_high, phi_lo) { | |
for (var iteration = 0; iteration < 16; ++iteration) { | |
a = (a_lo + a_high) / 2; | |
weightedSum(next.x, 1.0, current.x, a, pk); | |
phi = next.fx = f(next.x, next.fxprime); | |
phiPrime = dot(next.fxprime, pk); | |
if ((phi > (phi0 + c1 * a * phiPrime0)) || | |
(phi >= phi_lo)) { | |
a_high = a; | |
} else { | |
if (Math.abs(phiPrime) <= -c2 * phiPrime0) { | |
return a; | |
} | |
if (phiPrime * (a_high - a_lo) >= 0) { | |
a_high = a_lo; | |
} | |
a_lo = a; | |
phi_lo = phi; | |
} | |
} | |
return 0; | |
} | |
for (var iteration = 0; iteration < 10; ++iteration) { | |
weightedSum(next.x, 1.0, current.x, a, pk); | |
phi = next.fx = f(next.x, next.fxprime); | |
phiPrime = dot(next.fxprime, pk); | |
if ((phi > (phi0 + c1 * a * phiPrime0)) || | |
(iteration && (phi >= phi_old))) { | |
return zoom(a0, a, phi_old); | |
} | |
if (Math.abs(phiPrime) <= -c2 * phiPrime0) { | |
return a; | |
} | |
if (phiPrime >= 0) { | |
return zoom(a, a0, phi); | |
} | |
phi_old = phi; | |
a0 = a; | |
a *= 2; | |
} | |
return 0; | |
} | |
/** given a list of set objects, and their corresponding overlaps. | |
updates the (x, y, radius) attribute on each set such that their positions | |
roughly correspond to the desired overlaps */ | |
function venn$1(areas, parameters) { | |
parameters = parameters || {}; | |
parameters.maxIterations = parameters.maxIterations || 500; | |
var lossFn = parameters.lossFunction || lossFunction; | |
var initialLayout = parameters.initialLayout || bestInitialLayout; | |
var fminFn = parameters.fmin || fmin; | |
// add in missing pairwise areas as having 0 size | |
areas = addMissingAreas(areas); | |
// initial layout is done greedily | |
var circles = initialLayout(areas); | |
// transform x/y coordinates to a vector to optimize | |
var initial = [], | |
setids = [], | |
setid; | |
for (setid in circles) { | |
if (circles.hasOwnProperty(setid)) { | |
initial.push(circles[setid].x); | |
initial.push(circles[setid].y); | |
setids.push(setid); | |
} | |
} | |
// optimize initial layout from our loss function | |
var totalFunctionCalls = 0; | |
var solution = fminFn( | |
function(values) { | |
totalFunctionCalls += 1; | |
var current = {}; | |
for (var i = 0; i < setids.length; ++i) { | |
var setid = setids[i]; | |
current[setid] = { | |
x: values[2 * i], | |
y: values[2 * i + 1], | |
radius: circles[setid].radius, | |
// size : circles[setid].size | |
}; | |
} | |
return lossFn(current, areas); | |
}, | |
initial, | |
parameters); | |
// transform solution vector back to x/y points | |
var positions = solution.solution; | |
for (var i = 0; i < setids.length; ++i) { | |
setid = setids[i]; | |
circles[setid].x = positions[2 * i]; | |
circles[setid].y = positions[2 * i + 1]; | |
} | |
return circles; | |
} | |
/** Returns the distance necessary for two circles of radius r1 + r2 to | |
have the overlap area 'overlap' */ | |
function distanceFromIntersectArea(r1, r2, overlap) { | |
// handle complete overlapped circles | |
if (Math.min(r1, r2) * Math.min(r1, r2) * Math.PI <= overlap + SMALL) { | |
return Math.abs(r1 - r2); | |
} | |
return bisect(function(distance) { | |
return circleOverlap(r1, r2, distance) - overlap; | |
}, 0, r1 + r2); | |
} | |
/** Missing pair-wise intersection area data can cause problems: | |
treating as an unknown means that sets will be laid out overlapping, | |
which isn't what people expect. To reflect that we want disjoint sets | |
here, set the overlap to 0 for all missing pairwise set intersections */ | |
function addMissingAreas(areas) { | |
areas = areas.slice(); | |
// two circle intersections that aren't defined | |
var ids = [], | |
pairs = {}, | |
i, j, a, b; | |
for (i = 0; i < areas.length; ++i) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
ids.push(area.sets[0]); | |
} else if (area.sets.length == 2) { | |
a = area.sets[0]; | |
b = area.sets[1]; | |
pairs[[a, b]] = true; | |
pairs[[b, a]] = true; | |
} | |
} | |
ids.sort(function(a, b) { | |
return a > b; | |
}); | |
for (i = 0; i < ids.length; ++i) { | |
a = ids[i]; | |
for (j = i + 1; j < ids.length; ++j) { | |
b = ids[j]; | |
if (!([a, b] in pairs)) { | |
areas.push({ | |
'sets': [a, b], | |
'size': 0 | |
}); | |
} | |
} | |
} | |
return areas; | |
} | |
/// Returns two matrices, one of the euclidean distances between the sets | |
/// and the other indicating if there are subset or disjoint set relationships | |
function getDistanceMatrices(areas, sets, setids) { | |
// initialize an empty distance matrix between all the points | |
var distances = zerosM(sets.length, sets.length), | |
constraints = zerosM(sets.length, sets.length); | |
// compute required distances between all the sets such that | |
// the areas match | |
areas.filter(function(x) { | |
return x.sets.length == 2; | |
}) | |
.map(function(current) { | |
var left = setids[current.sets[0]], | |
right = setids[current.sets[1]], | |
r1 = Math.sqrt(sets[left].size / Math.PI), | |
r2 = Math.sqrt(sets[right].size / Math.PI), | |
distance = distanceFromIntersectArea(r1, r2, current.size); | |
distances[left][right] = distances[right][left] = distance; | |
// also update constraints to indicate if its a subset or disjoint | |
// relationship | |
var c = 0; | |
if (current.size + 1e-10 >= Math.min(sets[left].size, | |
sets[right].size)) { | |
c = 1; | |
} else if (current.size <= 1e-10) { | |
c = -1; | |
} | |
constraints[left][right] = constraints[right][left] = c; | |
}); | |
return { | |
distances: distances, | |
constraints: constraints | |
}; | |
} | |
/// computes the gradient and loss simulatenously for our constrained MDS optimizer | |
function constrainedMDSGradient(x, fxprime, distances, constraints) { | |
var loss = 0, | |
i; | |
for (i = 0; i < fxprime.length; ++i) { | |
fxprime[i] = 0; | |
} | |
for (i = 0; i < distances.length; ++i) { | |
var xi = x[2 * i], | |
yi = x[2 * i + 1]; | |
for (var j = i + 1; j < distances.length; ++j) { | |
var xj = x[2 * j], | |
yj = x[2 * j + 1], | |
dij = distances[i][j], | |
constraint = constraints[i][j]; | |
var squaredDistance = (xj - xi) * (xj - xi) + (yj - yi) * (yj - yi), | |
distance = Math.sqrt(squaredDistance), | |
delta = squaredDistance - dij * dij; | |
if (((constraint > 0) && (distance <= dij)) || | |
((constraint < 0) && (distance >= dij))) { | |
continue; | |
} | |
loss += 2 * delta * delta; | |
fxprime[2 * i] += 4 * delta * (xi - xj); | |
fxprime[2 * i + 1] += 4 * delta * (yi - yj); | |
fxprime[2 * j] += 4 * delta * (xj - xi); | |
fxprime[2 * j + 1] += 4 * delta * (yj - yi); | |
} | |
} | |
return loss; | |
} | |
/// takes the best working variant of either constrained MDS or greedy | |
function bestInitialLayout(areas, params) { | |
var initial = greedyLayout(areas, params); | |
// greedylayout is sufficient for all 2/3 circle cases. try out | |
// constrained MDS for higher order problems, take its output | |
// if it outperforms. (greedy is aesthetically better on 2/3 circles | |
// since it axis aligns) | |
if (areas.length >= 8) { | |
var constrained = constrainedMDSLayout(areas, params), | |
constrainedLoss = lossFunction(constrained, areas), | |
greedyLoss = lossFunction(initial, areas); | |
if (constrainedLoss + 1e-8 < greedyLoss) { | |
initial = constrained; | |
} | |
} | |
return initial; | |
} | |
/// use the constrained MDS variant to generate an initial layout | |
function constrainedMDSLayout(areas, params) { | |
params = params || {}; | |
var restarts = params.restarts || 10; | |
// bidirectionally map sets to a rowid (so we can create a matrix) | |
var sets = [], | |
setids = {}, | |
i; | |
for (i = 0; i < areas.length; ++i) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
setids[area.sets[0]] = sets.length; | |
sets.push(area); | |
} | |
} | |
var matrices = getDistanceMatrices(areas, sets, setids), | |
distances = matrices.distances, | |
constraints = matrices.constraints; | |
// keep distances bounded, things get messed up otherwise. | |
// TODO: proper preconditioner? | |
var norm = norm2(distances.map(norm2)) / (distances.length); | |
distances = distances.map(function(row) { | |
return row.map(function(value) { | |
return value / norm; | |
}); | |
}); | |
var obj = function(x, fxprime) { | |
return constrainedMDSGradient(x, fxprime, distances, constraints); | |
}; | |
var best, current; | |
for (i = 0; i < restarts; ++i) { | |
var initial = zeros(distances.length * 2).map(Math.random); | |
current = minimizeConjugateGradient(obj, initial, params); | |
if (!best || (current.fx < best.fx)) { | |
best = current; | |
} | |
} | |
var positions = best.x; | |
// translate rows back to (x,y,radius) coordinates | |
var circles = {}; | |
for (i = 0; i < sets.length; ++i) { | |
var set = sets[i]; | |
circles[set.sets[0]] = { | |
x: positions[2 * i] * norm, | |
y: positions[2 * i + 1] * norm, | |
radius: Math.sqrt(set.size / Math.PI) | |
}; | |
} | |
if (params.history) { | |
for (i = 0; i < params.history.length; ++i) { | |
multiplyBy(params.history[i].x, norm); | |
} | |
} | |
return circles; | |
} | |
/** Lays out a Venn diagram greedily, going from most overlapped sets to | |
least overlapped, attempting to position each new set such that the | |
overlapping areas to already positioned sets are basically right */ | |
function greedyLayout(areas) { | |
// define a circle for each set | |
var circles = {}, | |
setOverlaps = {}, | |
set; | |
for (var i = 0; i < areas.length; ++i) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
set = area.sets[0]; | |
circles[set] = { | |
x: 1e10, | |
y: 1e10, | |
rowid: circles.length, | |
size: area.size, | |
radius: Math.sqrt(area.size / Math.PI) | |
}; | |
setOverlaps[set] = []; | |
} | |
} | |
areas = areas.filter(function(a) { | |
return a.sets.length == 2; | |
}); | |
// map each set to a list of all the other sets that overlap it | |
for (i = 0; i < areas.length; ++i) { | |
var current = areas[i]; | |
var weight = current.hasOwnProperty('weight') ? current.weight : 1.0; | |
var left = current.sets[0], | |
right = current.sets[1]; | |
// completely overlapped circles shouldn't be positioned early here | |
if (current.size + SMALL >= Math.min(circles[left].size, | |
circles[right].size)) { | |
weight = 0; | |
} | |
setOverlaps[left].push({ | |
set: right, | |
size: current.size, | |
weight: weight | |
}); | |
setOverlaps[right].push({ | |
set: left, | |
size: current.size, | |
weight: weight | |
}); | |
} | |
// get list of most overlapped sets | |
var mostOverlapped = []; | |
for (set in setOverlaps) { | |
if (setOverlaps.hasOwnProperty(set)) { | |
var size = 0; | |
for (i = 0; i < setOverlaps[set].length; ++i) { | |
size += setOverlaps[set][i].size * setOverlaps[set][i].weight; | |
} | |
mostOverlapped.push({ | |
set: set, | |
size: size | |
}); | |
} | |
} | |
// sort by size desc | |
function sortOrder(a, b) { | |
return b.size - a.size; | |
} | |
mostOverlapped.sort(sortOrder); | |
// keep track of what sets have been laid out | |
var positioned = {}; | |
function isPositioned(element) { | |
return element.set in positioned; | |
} | |
// adds a point to the output | |
function positionSet(point, index) { | |
circles[index].x = point.x; | |
circles[index].y = point.y; | |
positioned[index] = true; | |
} | |
// add most overlapped set at (0,0) | |
positionSet({ | |
x: 0, | |
y: 0 | |
}, mostOverlapped[0].set); | |
// get distances between all points. TODO, necessary? | |
// answer: probably not | |
// var distances = venn.getDistanceMatrices(circles, areas).distances; | |
for (i = 1; i < mostOverlapped.length; ++i) { | |
var setIndex = mostOverlapped[i].set, | |
overlap = setOverlaps[setIndex].filter(isPositioned); | |
set = circles[setIndex]; | |
overlap.sort(sortOrder); | |
if (overlap.length === 0) { | |
// this shouldn't happen anymore with addMissingAreas | |
throw "ERROR: missing pairwise overlap information"; | |
} | |
var points = []; | |
for (var j = 0; j < overlap.length; ++j) { | |
// get appropriate distance from most overlapped already added set | |
var p1 = circles[overlap[j].set], | |
d1 = distanceFromIntersectArea(set.radius, p1.radius, | |
overlap[j].size); | |
// sample positions at 90 degrees for maximum aesthetics | |
points.push({ | |
x: p1.x + d1, | |
y: p1.y | |
}); | |
points.push({ | |
x: p1.x - d1, | |
y: p1.y | |
}); | |
points.push({ | |
y: p1.y + d1, | |
x: p1.x | |
}); | |
points.push({ | |
y: p1.y - d1, | |
x: p1.x | |
}); | |
// if we have at least 2 overlaps, then figure out where the | |
// set should be positioned analytically and try those too | |
for (var k = j + 1; k < overlap.length; ++k) { | |
var p2 = circles[overlap[k].set], | |
d2 = distanceFromIntersectArea(set.radius, p2.radius, | |
overlap[k].size); | |
var extraPoints = circleCircleIntersection({ | |
x: p1.x, | |
y: p1.y, | |
radius: d1 | |
}, { | |
x: p2.x, | |
y: p2.y, | |
radius: d2 | |
}); | |
for (var l = 0; l < extraPoints.length; ++l) { | |
points.push(extraPoints[l]); | |
} | |
} | |
} | |
// we have some candidate positions for the set, examine loss | |
// at each position to figure out where to put it at | |
var bestLoss = 1e50, | |
bestPoint = points[0]; | |
for (j = 0; j < points.length; ++j) { | |
circles[setIndex].x = points[j].x; | |
circles[setIndex].y = points[j].y; | |
var loss = lossFunction(circles, areas); | |
if (loss < bestLoss) { | |
bestLoss = loss; | |
bestPoint = points[j]; | |
} | |
} | |
positionSet(bestPoint, setIndex); | |
} | |
return circles; | |
} | |
/// Uses multidimensional scaling to approximate a first layout here | |
// function classicMDSLayout(areas) { | |
// // bidirectionally map sets to a rowid (so we can create a matrix) | |
// var sets = [], | |
// setids = {}; | |
// for (var i = 0; i < areas.length; ++i) { | |
// var area = areas[i]; | |
// if (area.sets.length == 1) { | |
// setids[area.sets[0]] = sets.length; | |
// sets.push(area); | |
// } | |
// } | |
// // get the distance matrix, and use to position sets | |
// var distances = getDistanceMatrices(areas, sets, setids).distances; | |
// var positions = mds.classic(distances); | |
// // translate rows back to (x,y,radius) coordinates | |
// var circles = {}; | |
// for (i = 0; i < sets.length; ++i) { | |
// var set = sets[i]; | |
// circles[set.sets[0]] = { | |
// x: positions[i][0], | |
// y: positions[i][1], | |
// radius: Math.sqrt(set.size / Math.PI) | |
// }; | |
// } | |
// return circles; | |
// }; | |
/** Given a bunch of sets, and the desired overlaps between these sets - computes | |
the distance from the actual overlaps to the desired overlaps. Note that | |
this method ignores overlaps of more than 2 circles */ | |
function lossFunction(sets, overlaps) { | |
var output = 0; | |
function getCircles(indices) { | |
return indices.map(function(i) { | |
return sets[i]; | |
}); | |
} | |
for (var i = 0; i < overlaps.length; ++i) { | |
var area = overlaps[i], | |
overlap; | |
if (area.sets.length == 1) { | |
continue; | |
} else if (area.sets.length == 2) { | |
var left = sets[area.sets[0]], | |
right = sets[area.sets[1]]; | |
overlap = circleOverlap(left.radius, right.radius, | |
distance(left, right)); | |
} else { | |
overlap = intersectionArea(getCircles(area.sets)); | |
} | |
var weight = area.hasOwnProperty('weight') ? area.weight : 1.0; | |
output += weight * (overlap - area.size) * (overlap - area.size); | |
} | |
return output; | |
} | |
// orientates a bunch of circles to point in orientation | |
function orientateCircles(circles, orientation) { | |
// sort circles by size | |
circles.sort(function(a, b) { | |
return b.radius - a.radius; | |
}); | |
var i; | |
// shift circles so largest circle is at (0, 0) | |
if (circles.length > 0) { | |
var largestX = circles[0].x, | |
largestY = circles[0].y; | |
for (i = 0; i < circles.length; ++i) { | |
circles[i].x -= largestX; | |
circles[i].y -= largestY; | |
} | |
} | |
// rotate circles so that second largest is at an angle of 'orientation' | |
// from largest | |
if (circles.length > 1) { | |
var rotation = Math.atan2(circles[1].x, circles[1].y) - orientation, | |
c = Math.cos(rotation), | |
s = Math.sin(rotation), | |
x, y; | |
for (i = 0; i < circles.length; ++i) { | |
x = circles[i].x; | |
y = circles[i].y; | |
circles[i].x = c * x - s * y; | |
circles[i].y = s * x + c * y; | |
} | |
} | |
// mirror solution if third solution is above plane specified by | |
// first two circles | |
if (circles.length > 2) { | |
var angle = Math.atan2(circles[2].x, circles[2].y) - orientation; | |
while (angle < 0) { | |
angle += 2 * Math.PI; | |
} | |
while (angle > 2 * Math.PI) { | |
angle -= 2 * Math.PI; | |
} | |
if (angle > Math.PI) { | |
var slope = circles[1].y / (1e-10 + circles[1].x); | |
for (i = 0; i < circles.length; ++i) { | |
var d = (circles[i].x + slope * circles[i].y) / (1 + slope * slope); | |
circles[i].x = 2 * d - circles[i].x; | |
circles[i].y = 2 * d * slope - circles[i].y; | |
} | |
} | |
} | |
} | |
function disjointCluster(circles) { | |
// union-find clustering to get disjoint sets | |
circles.map(function(circle) { | |
circle.parent = circle; | |
}); | |
// path compression step in union find | |
function find(circle) { | |
if (circle.parent !== circle) { | |
circle.parent = find(circle.parent); | |
} | |
return circle.parent; | |
} | |
function union(x, y) { | |
var xRoot = find(x), | |
yRoot = find(y); | |
xRoot.parent = yRoot; | |
} | |
// get the union of all overlapping sets | |
for (var i = 0; i < circles.length; ++i) { | |
for (var j = i + 1; j < circles.length; ++j) { | |
var maxDistance = circles[i].radius + circles[j].radius; | |
if (distance(circles[i], circles[j]) + 1e-10 < maxDistance) { | |
union(circles[j], circles[i]); | |
} | |
} | |
} | |
// find all the disjoint clusters and group them together | |
var disjointClst = {}, | |
setid; | |
for (i = 0; i < circles.length; ++i) { | |
setid = find(circles[i]).parent.setid; | |
if (!(setid in disjointClst)) { | |
disjointClst[setid] = []; | |
} | |
disjointClst[setid].push(circles[i]); | |
} | |
// cleanup bookkeeping | |
circles.map(function(circle) { | |
delete circle.parent; | |
}); | |
// return in more usable form | |
var ret = []; | |
for (setid in disjointClst) { | |
if (disjointClst.hasOwnProperty(setid)) { | |
ret.push(disjointClst[setid]); | |
} | |
} | |
return ret; | |
} | |
function getBoundingBox(circles) { | |
var minMax = function(d) { | |
var hi = Math.max.apply(null, circles.map( | |
function(c) { | |
return c[d] + c.radius; | |
})), | |
lo = Math.min.apply(null, circles.map( | |
function(c) { | |
return c[d] - c.radius; | |
})); | |
return { | |
max: hi, | |
min: lo | |
}; | |
}; | |
return { | |
xRange: minMax('x'), | |
yRange: minMax('y') | |
}; | |
} | |
function normalizeSolution(solution, orientation) { | |
orientation = orientation || Math.PI / 2; | |
// work with a list instead of a dictionary, and take a copy so we | |
// don't mutate input | |
var circles = [], | |
i, setid; | |
for (setid in solution) { | |
if (solution.hasOwnProperty(setid)) { | |
var previous = solution[setid]; | |
circles.push({ | |
x: previous.x, | |
y: previous.y, | |
radius: previous.radius, | |
setid: setid | |
}); | |
} | |
} | |
// get all the disjoint clusters | |
var clusters = disjointCluster(circles); | |
// orientate all disjoint sets, get sizes | |
for (i = 0; i < clusters.length; ++i) { | |
orientateCircles(clusters[i], orientation); | |
var bounds = getBoundingBox(clusters[i]); | |
clusters[i].size = (bounds.xRange.max - bounds.xRange.min) * (bounds.yRange.max - bounds.yRange.min); | |
clusters[i].bounds = bounds; | |
} | |
clusters.sort(function(a, b) { | |
return b.size - a.size; | |
}); | |
// orientate the largest at 0,0, and get the bounds | |
circles = clusters[0]; | |
var returnBounds = circles.bounds; | |
var spacing = (returnBounds.xRange.max - returnBounds.xRange.min) / 50; | |
function addCluster(cluster, right, bottom) { | |
if (!cluster) return; | |
var bounds = cluster.bounds, | |
xOffset, yOffset, centreing; | |
if (right) { | |
xOffset = returnBounds.xRange.max - bounds.xRange.min + spacing; | |
} else { | |
xOffset = returnBounds.xRange.max - bounds.xRange.max - spacing; | |
centreing = (bounds.xRange.max - bounds.xRange.min) / 2 - | |
(returnBounds.xRange.max - returnBounds.xRange.min) / 2; | |
if (centreing < 0) xOffset += centreing; | |
} | |
if (bottom) { | |
yOffset = returnBounds.yRange.max - bounds.yRange.min + spacing; | |
} else { | |
yOffset = returnBounds.yRange.max - bounds.yRange.max - spacing; | |
centreing = (bounds.yRange.max - bounds.yRange.min) / 2 - | |
(returnBounds.yRange.max - returnBounds.yRange.min) / 2; | |
if (centreing < 0) yOffset += centreing; | |
} | |
for (var j = 0; j < cluster.length; ++j) { | |
cluster[j].x += xOffset; | |
cluster[j].y += yOffset; | |
circles.push(cluster[j]); | |
} | |
} | |
var index = 1; | |
while (index < clusters.length) { | |
addCluster(clusters[index], true, false); | |
addCluster(clusters[index + 1], false, true); | |
addCluster(clusters[index + 2], true, true); | |
index += 3; | |
// have one cluster (in top left). lay out next three relative | |
// to it in a grid | |
returnBounds = getBoundingBox(circles); | |
} | |
// convert back to solution form | |
var ret = {}; | |
for (i = 0; i < circles.length; ++i) { | |
ret[circles[i].setid] = circles[i]; | |
} | |
return ret; | |
} | |
/** Scales a solution from venn.venn or venn.greedyLayout such that it fits in | |
a rectangle of width/height - with padding around the borders. also | |
centers the diagram in the available space at the same time */ | |
function scaleSolution(solution, width, height, padding) { | |
var circles = [], | |
setids = []; | |
for (var setid in solution) { | |
if (solution.hasOwnProperty(setid)) { | |
setids.push(setid); | |
circles.push(solution[setid]); | |
} | |
} | |
width -= 2 * padding; | |
height -= 2 * padding; | |
var bounds = getBoundingBox(circles), | |
xRange = bounds.xRange, | |
yRange = bounds.yRange, | |
xScaling = width / (xRange.max - xRange.min), | |
yScaling = height / (yRange.max - yRange.min), | |
scaling = Math.min(yScaling, xScaling), | |
// while we're at it, center the diagram too | |
xOffset = (width - (xRange.max - xRange.min) * scaling) / 2, | |
yOffset = (height - (yRange.max - yRange.min) * scaling) / 2; | |
var scaled = {}; | |
for (var i = 0; i < circles.length; ++i) { | |
var circle = circles[i]; | |
scaled[setids[i]] = { | |
radius: scaling * circle.radius, | |
x: padding + xOffset + (circle.x - xRange.min) * scaling, | |
y: padding + yOffset + (circle.y - yRange.min) * scaling, | |
}; | |
} | |
return scaled; | |
} | |
function circleMargin(current, interior, exterior) { | |
var margin = interior[0].radius - distance(interior[0], current), | |
i, m; | |
for (i = 1; i < interior.length; ++i) { | |
m = interior[i].radius - distance(interior[i], current); | |
if (m <= margin) { | |
margin = m; | |
} | |
} | |
for (i = 0; i < exterior.length; ++i) { | |
m = distance(exterior[i], current) - exterior[i].radius; | |
if (m <= margin) { | |
margin = m; | |
} | |
} | |
return margin; | |
} | |
// compute the center of some circles by maximizing the margin of | |
// the center point relative to the circles (interior) after subtracting | |
// nearby circles (exterior) | |
function computeTextCentre(interior, exterior) { | |
// get an initial estimate by sampling around the interior circles | |
// and taking the point with the biggest margin | |
var points = [], | |
i; | |
for (i = 0; i < interior.length; ++i) { | |
var c = interior[i]; | |
points.push({ | |
x: c.x, | |
y: c.y | |
}); | |
points.push({ | |
x: c.x + c.radius / 2, | |
y: c.y | |
}); | |
points.push({ | |
x: c.x - c.radius / 2, | |
y: c.y | |
}); | |
points.push({ | |
x: c.x, | |
y: c.y + c.radius / 2 | |
}); | |
points.push({ | |
x: c.x, | |
y: c.y - c.radius / 2 | |
}); | |
} | |
var initial = points[0], | |
margin = circleMargin(points[0], interior, exterior); | |
for (i = 1; i < points.length; ++i) { | |
var m = circleMargin(points[i], interior, exterior); | |
if (m >= margin) { | |
initial = points[i]; | |
margin = m; | |
} | |
} | |
// maximize the margin numerically | |
var solution = fmin( | |
function(p) { | |
return -1 * circleMargin({ | |
x: p[0], | |
y: p[1] | |
}, interior, exterior); | |
}, [initial.x, initial.y], { | |
maxIterations: 500, | |
minErrorDelta: 1e-10 | |
}).solution; | |
var ret = { | |
x: solution[0], | |
y: solution[1] | |
}; | |
// check solution, fallback as needed (happens if fully overlapped | |
// etc) | |
var valid = true; | |
for (i = 0; i < interior.length; ++i) { | |
if (distance(ret, interior[i]) > interior[i].radius) { | |
valid = false; | |
break; | |
} | |
} | |
for (i = 0; i < exterior.length; ++i) { | |
if (distance(ret, exterior[i]) < exterior[i].radius) { | |
valid = false; | |
break; | |
} | |
} | |
if (!valid) { | |
if (interior.length == 1) { | |
ret = { | |
x: interior[0].x, | |
y: interior[0].y | |
}; | |
} else { | |
var areaStats = {}; | |
intersectionArea(interior, areaStats); | |
if (areaStats.arcs.length === 0) { | |
ret = { | |
'x': 0, | |
'y': -1000, | |
disjoint: true | |
}; | |
} else if (areaStats.arcs.length == 1) { | |
ret = { | |
'x': areaStats.arcs[0].circle.x, | |
'y': areaStats.arcs[0].circle.y | |
}; | |
} else if (exterior.length) { | |
// try again without other circles | |
ret = computeTextCentre(interior, []); | |
} else { | |
// take average of all the points in the intersection | |
// polygon. this should basically never happen | |
// and has some issues: | |
// https://github.com/benfred/venn.js/issues/48#issuecomment-146069777 | |
ret = getCenter(areaStats.arcs.map(function(a) { | |
return a.p1; | |
})); | |
} | |
} | |
} | |
return ret; | |
} | |
// given a dictionary of {setid : circle}, returns | |
// a dictionary of setid to list of circles that completely overlap it | |
function getOverlappingCircles(circles) { | |
var ret = {}, | |
circleids = []; | |
for (var circleid in circles) { | |
circleids.push(circleid); | |
ret[circleid] = []; | |
} | |
for (var i = 0; i < circleids.length; i++) { | |
var a = circles[circleids[i]]; | |
for (var j = i + 1; j < circleids.length; ++j) { | |
var b = circles[circleids[j]], | |
d = distance(a, b); | |
if (d + b.radius <= a.radius + 1e-10) { | |
ret[circleids[j]].push(circleids[i]); | |
} else if (d + a.radius <= b.radius + 1e-10) { | |
ret[circleids[i]].push(circleids[j]); | |
} | |
} | |
} | |
return ret; | |
} | |
function computeTextCentres(circles, areas) { | |
var ret = {}, | |
overlapped = getOverlappingCircles(circles); | |
for (var i = 0; i < areas.length; ++i) { | |
var area = areas[i].sets, | |
areaids = {}, | |
exclude = {}; | |
for (var j = 0; j < area.length; ++j) { | |
areaids[area[j]] = true; | |
var overlaps = overlapped[area[j]]; | |
// keep track of any circles that overlap this area, | |
// and don't consider for purposes of computing the text | |
// centre | |
for (var k = 0; k < overlaps.length; ++k) { | |
exclude[overlaps[k]] = true; | |
} | |
} | |
var interior = [], | |
exterior = []; | |
for (var setid in circles) { | |
if (setid in areaids) { | |
interior.push(circles[setid]); | |
} else if (!(setid in exclude)) { | |
exterior.push(circles[setid]); | |
} | |
} | |
var centre = computeTextCentre(interior, exterior); | |
ret[area] = centre; | |
if (centre.disjoint && (areas[i].size > 0)) { | |
console.log("WARNING: area " + area + " not represented on screen"); | |
} | |
} | |
return ret; | |
} | |
function circlePath(x, y, r) { | |
var ret = []; | |
ret.push("\nM", x, y); | |
ret.push("\nm", -r, 0); | |
ret.push("\na", r, r, 0, 1, 0, r * 2, 0); | |
ret.push("\na", r, r, 0, 1, 0, -r * 2, 0); | |
return ret.join(" "); | |
} | |
/** returns a svg path of the intersection area of a bunch of circles */ | |
function intersectionAreaPath(circles) { | |
var stats = {}; | |
intersectionArea(circles, stats); | |
var arcs = stats.arcs; | |
if (arcs.length === 0) { | |
return "M 0 0"; | |
} else if (arcs.length == 1) { | |
var circle = arcs[0].circle; | |
return circlePath(circle.x, circle.y, circle.radius); | |
} else { | |
// draw path around arcs | |
var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y]; | |
for (var i = 0; i < arcs.length; ++i) { | |
var arc = arcs[i], | |
r = arc.circle.radius, | |
wide = arc.width > r; | |
ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, | |
arc.p1.x, arc.p1.y); | |
} | |
return ret.join(" "); | |
} | |
} | |
function venn() { | |
// d3.layout.venn = function() { | |
var opts = { | |
sets: null, | |
setsAccessor: setsAccessorFn, | |
setsSize: setsSize, | |
packingStragegy: pack, | |
packingConfig: { | |
value: valueFn, | |
}, | |
size: [1, 1], | |
padding: 0, | |
// options from venn (https://github.com/benfred/venn.js) | |
layoutFunction: venn$1, | |
orientation: Math.PI / 2, | |
normalize: true | |
}; | |
var circles, | |
nodes, | |
packer, | |
centres; | |
// Build simple getter and setter Functions | |
binder(venn, opts); | |
//The layout function | |
function venn(data) { | |
if (!arguments.length) return nodes; | |
nodes = compute(data); | |
return venn; | |
} | |
function compute(data) { | |
var sets = venn.sets(), | |
setsValues, | |
layout = venn.layoutFunction(), | |
packingStragegy = venn.packingStragegy(), | |
size = venn.size(), | |
width = size[0], | |
height = size[1], | |
// normalizeSolution = normalizeSolution, | |
// scaleSolution = scaleSolution, | |
// computeTextCentres = computeTextCentres, | |
solution, | |
oldCircles; | |
sets = extractSets(data); | |
setsValues = sets.values() | |
solution = layout(setsValues); | |
console.info("data: ", data) | |
console.info("sets: ", sets) | |
if (venn.normalize()) { | |
solution = normalizeSolution(solution, venn.orientation()); | |
} | |
oldCircles = circles; | |
circles = scaleSolution(solution, width, height, venn.padding()); | |
for (var k in oldCircles) { | |
if (circles[k]) { | |
circles[k].previous = oldCircles[k]; | |
} | |
} | |
oldCircles = null; | |
centres = computeTextCentres(circles, setsValues); | |
// store intersectionAreaPath into sets | |
sets.forEach(function(k,set) { | |
set.d = pathTween(set); | |
set.center = centres[k]; | |
set.innerRadius = computeDistanceToCircles(set); | |
// packingStragegy(set, valueFunction, circles); | |
}); | |
packer = packingStragegy(venn, data) | |
function computeDistanceToCircles(set) { | |
var sets = set.sets, | |
center = set.center, | |
// hasOneSet = set.length ==1, | |
k, circle, dist, isInside, isOverlapp, | |
candidate = Infinity; | |
// if(sets.length ==1) { | |
for (k in circles) { | |
circle = circles[k]; | |
isInside = sets.indexOf(k) > -1; | |
isOverlapp = sets.indexOf(k) < -1 && checkOverlapp(sets, circle); | |
dist = distance(center, circle); | |
dist = isInside ? circle.radius - dist : isOverlapp ? dist - circle.radius : dist + circle.radius; | |
if (dist < candidate) { | |
candidate = dist; | |
} | |
} | |
return candidate; | |
} | |
function checkOverlapp(sets, circle) { | |
var i = 0, | |
l = sets.length, | |
c; | |
for (i; i < l; i++) { | |
c = circles[sets[i]]; | |
if (distance(c, circle) < c.radius) { | |
return true; | |
} | |
} | |
return false; | |
} | |
// interpolate intersection area paths between previous and | |
// current paths | |
function pathTween(set) { | |
return function(t) { | |
var c = set.sets.map(function(set) { | |
// var start = previous[set], | |
var circle = circles[set]; | |
var start = circle && circle["previous"], | |
end = circle; | |
if (!start) { | |
start = { | |
x: width / 2, | |
y: height / 2, | |
radius: 1 | |
}; | |
} | |
if (!end) { | |
end = { | |
x: width / 2, | |
y: height / 2, | |
radius: 1 | |
}; | |
} | |
if (t == 1 && circle) { | |
circle["previous"] = end; | |
} | |
return { | |
'x': start.x * (1 - t) + end.x * t, | |
'y': start.y * (1 - t) + end.y * t, | |
'radius': start.radius * (1 - t) + end.radius * t | |
}; | |
}); | |
return intersectionAreaPath(c); | |
}; | |
}; | |
return data | |
} | |
// loop over data and build the set so that they comply with https://github.com/benfred/venn.js | |
/* | |
from data = [ | |
{"set":["A"],"name":"node_0"}, | |
{"set":["B"],"name":"node_1"}, | |
{"set":["B","A"],"name":"node_2"} | |
{"set":["B","A"],"name":"node_3"} | |
] | |
to sets = [ | |
{sets: ['A'], size: 1, nodes : ['node_0']}, | |
{sets: ['B'], size: 1, nodes : ['node_1']}, | |
{sets: ['A','B'], size: 2, nodes ['node_2', 'node_3']} | |
]; | |
*/ | |
function extractSets(data) { | |
var sets = d3.map({}, function(d) { | |
return d.__key__ | |
}), | |
individualSets = d3.map(), | |
accessor = venn.setsAccessor(), | |
size = venn.setsSize(), | |
set, | |
s, | |
key, | |
i, | |
n = data.length; | |
for (i = -1; ++i < n;) { | |
set = accessor(data[i]); | |
if (set.length) { | |
key = set.sort().join(','); //so taht we have the same key as in https://github.com/benfred/venn.js | |
set.forEach(function(val) { | |
if (s = individualSets.get(val)) { | |
s.size += 1; | |
// s.nodes.push([data[i]]); | |
} else { | |
individualSets.set(val, { | |
__key__: val, | |
size: 1, | |
sets: [val], | |
nodes: [] | |
// nodes: [data[i]] | |
}) | |
} | |
}); | |
data[i].__setKey__ = key; | |
if (s = sets.get(key)) { | |
s.size++; | |
s.nodes.push(data[i]); | |
} else { | |
sets.set(key, { | |
__key__: key, | |
sets: set, | |
size: 1, | |
nodes: [data[i]] | |
}); | |
} | |
} | |
} | |
individualSets.forEach(function(k, v) { | |
if (!sets.get(k)) { | |
sets.set(k, v); | |
} | |
}); | |
// reset the size for each set. | |
sets.forEach(function(k, v) { | |
v.size = size(v.size); | |
}) | |
// sets = sets.values(); | |
venn.sets(sets); | |
return sets; | |
} | |
function setsSize(size) { | |
return size; | |
} | |
// data accessors | |
function setsAccessorFn(d) { | |
return d.set || []; | |
} | |
function valueFn(d) { | |
return d.value; | |
} | |
venn.packingConfig = function(_) { | |
var config = opts.packingConfig; | |
if (!arguments.length) { | |
return config; | |
} | |
for (var k in _) { | |
config[k] = _[k] | |
} | |
if(packer) { | |
applier(packer, _) | |
} | |
return venn; | |
}; | |
venn.packer = function() { | |
return packer; | |
} | |
venn.circles = function() { | |
return circles; | |
}; | |
venn.centres = function() { | |
return centres; | |
}; | |
venn.nodes = venn; | |
return venn; | |
// return d3.rebind(venn, event, "on"); | |
}; | |
var version = "0.0.9"; | |
exports.version = version; | |
exports.venn = venn; | |
exports.pack = pack; | |
exports.distribute = distribute; | |
exports.force = force; | |
}));(function(target, export_name, name) { | |
if (target) { | |
target[name] = this[export_name] && this[export_name][name]; | |
for (var k in this[export_name]) { | |
if (k != name) { | |
target[name][k] = this[export_name][k]; | |
} | |
} | |
delete this[export_name]; | |
} | |
}(this.d3 && this.d3.layout, 'd3_venn', 'venn')); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8"/> | |
<meta http-equiv="X-UA-Compatible" content="IE=edge"/> | |
<title>simple test venn layout</title> | |
<script src="//d3js.org/d3.v3.min.js"></script> | |
<script src="d3-venn.js"></script> | |
<link rel="stylesheet" href=""></link> | |
</head> | |
<body> | |
<div id="inputs"></div> | |
<svg id="venn" ></svg> | |
<script type="text/javascript" src="simple.js"></script> | |
</body> | |
</html> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var width = 600, | |
height = 600, | |
colors = d3.scale.category10(); | |
var setChar = 'ABCDEFGHIJKLMN', | |
charFn = i => setChar[i], | |
setLength = 4, | |
sets = d3.range(setLength).map(function(d, i) { | |
return setChar[i] | |
}) | |
var dataLength = 180, | |
ii = 0, | |
data = d3.range(dataLength).map((d, i) => { | |
var l = Math.floor((Math.random() * setLength / 3) + 1), | |
set = [], | |
c, | |
i; | |
for (i = -1; ++i < l;) { | |
c = charFn(Math.floor((Math.random() * setLength))); | |
if (set.indexOf(c) == -1) { | |
set.push(c) | |
} | |
} | |
return { | |
set: set, | |
name: 'set_' + ii++ | |
} | |
}); | |
var l = d3.layout.venn().size([width, height]), | |
ld = l.nodes(data); | |
var svg = d3.select('svg') | |
.attr('width', width) | |
.attr('height', height); | |
var nodes = svg.selectAll("g") | |
.data(l.sets().values(), function(d) { | |
return d.__key__; | |
}); | |
var venn = nodes.enter() | |
.append('g') | |
.attr("class", function(d) { | |
return "venn-area venn-" + | |
(d.sets.length == 1 ? "circle" : "intersection"); | |
}) | |
.attr('fill', function(d, i) { | |
return colors(i) | |
}) | |
venn.append("path") | |
.attr('d', function(d, i) { | |
return d.d(1) | |
}) | |
// .attr('fill', function(d,i) {return colors(i)} ) | |
.attr('opacity', 0.25) | |
venn.append("text") | |
.attr("class", "label") | |
.text(function(d) { | |
return d.__key__; | |
}) | |
.attr("text-anchor", "middle") | |
.attr("dy", ".35em") | |
.attr("x", function(d) { | |
return d.center.x | |
}) | |
.attr("y", function(d) { | |
return d.center.y | |
}); | |
var points = venn.selectAll("circle.node") | |
.data(function(d) { | |
return d.nodes | |
}) | |
.enter() | |
points.append('circle') | |
.attr('class', 'node') | |
.attr("cx", function(d) { | |
return d.x | |
}) | |
.attr("cy", function(d) { | |
return d.y | |
}) | |
.attr('r', 3) | |
venn.append('circle') | |
.attr('class', 'inner') | |
.attr('fill', 'grey') | |
.attr('opacity', 0.2) | |
.attr("cx", function(d) { | |
return d.center.x | |
}) | |
.attr("cy", function(d) { | |
return d.center.y | |
}) | |
.attr('r', function(d) { | |
return d.innerRadius | |
}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment