Last active
August 8, 2018 07:28
-
-
Save christophergandrud/b8d14a51d38a2bd0533e8317d8959b92 to your computer and use it in GitHub Desktop.
Quick modification to Rainey and Kern Figure 2 to remove transformation bias https://github.com/carlislerainey/unnecessary/blob/master/R/intuition-sims.R
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
set.seed(19743) | |
library(tidyverse) | |
library(ggrepel) | |
library(forcats) | |
tau <- function(x) { | |
x^2 | |
} | |
n <- 1000 | |
n_sims <- 1000 | |
n_plot_keep <- 4 | |
tilde_df <- mu_mle_seg_df <- tau_mle_seg_df <- tau_avg_seg_df <- ests_df <- NULL | |
for (i in 1:n_sims) { | |
y <- rnorm(n) | |
mu_hat <- mean(y) | |
sigma_hat <- 1/sqrt(n) | |
mu_tilde <- rnorm(1000, mean = mu_hat, sd = sigma_hat) | |
## ----------------- Christopher Gandrud Modified ---------------------------- # | |
# Rainy and Kern original ------ | |
#tau_tilde <- tau(mu_tilde) | |
#tau_hat_avg <- mean(tau_tilde) | |
# ------------------------------ | |
# Summarise the distributions with the median and then find QI | |
# Need to cleanup variable names | |
tau_tilde <- median(mu_tilde) | |
tau_hat_avg <- tau(tau_tilde) | |
## ----------------- Christopher Gandrud Modified [end] ---------------------- # | |
tau_hat_mle <- tau(mu_hat) | |
ests_df <- ests_df %>% | |
rbind(data.frame(iteration = i, | |
quantity = c("mu", "tau", "tau"), | |
method = c("mle", "mle", "avg."), | |
est = c(mu_hat, tau_hat_mle, tau_hat_avg))) | |
if (i <= n_plot_keep) { | |
tilde_df <- tilde_df %>% | |
rbind(data.frame(iteration = i, | |
mu = mu_tilde, | |
tau = tau_tilde)) | |
mu_mle_seg_df <- mu_mle_seg_df %>% | |
rbind(data.frame(iteration = i, | |
x = mu_hat, | |
xend = mu_hat, | |
y = -Inf, | |
yend = tau(mu_hat))) | |
tau_mle_seg_df <- tau_mle_seg_df %>% | |
rbind(data.frame(iteration = i, | |
x = -Inf, | |
xend = mu_hat, | |
y = tau(mu_hat), | |
yend = tau(mu_hat))) | |
tau_avg_seg_df <- tau_avg_seg_df %>% | |
rbind(data.frame(iteration = i, | |
x = -Inf, | |
xend = Inf, | |
y = tau_hat_avg, | |
yend = tau_hat_avg)) | |
} | |
if (i == 1) { | |
pts_to_label_df <- data.frame(iteration = i, | |
x = c(-Inf, -Inf, mu_hat), | |
y = c(tau_hat_avg, tau(mu_hat), -Inf), | |
label = c("hat(tau)^{avg.}", | |
"hat(tau)^{mle}", | |
"hat(mu)^{mle}"), | |
color = c("avg.", | |
"mle", | |
"mle")) | |
} | |
} | |
gg_list <- list() | |
for (i in 1:n_plot_keep) { | |
gg <- ggplot(data = filter(tilde_df, iteration == i), | |
aes(x = mu, y = tau)) + | |
geom_point(alpha = 0.2, | |
shape = 21) + | |
theme_minimal() + | |
geom_rug(alpha = 0.2) + | |
geom_segment(data = filter(mu_mle_seg_df, iteration == i), aes(x = x, xend = xend, y = y, yend = yend), | |
color = "#1b9e77") + | |
geom_segment(data = filter(tau_mle_seg_df, iteration == i), aes(x = x, xend = xend, y = y, yend = yend), | |
color = "#1b9e77") + | |
geom_segment(data = filter(tau_avg_seg_df, iteration == i), aes(x = x, xend = xend, y = y, yend = yend), | |
color = "#7570b3", linetype = "dashed") + | |
labs(x = expression(tilde(mu)), | |
y = expression(tilde(tau))) + | |
guides(color = FALSE) | |
if (i == 1) { | |
gg <- gg + | |
geom_label_repel(data = pts_to_label_df, aes(x = x, y = y, | |
label = paste(label), | |
color = color), | |
parse = TRUE, size = 2.3) + | |
scale_color_manual(values = c("#7570b3", "#1b9e77")) | |
} | |
gg <- ggExtra::ggMarginal(gg) | |
ggsave(gg, filename = paste0("~/Desktop/Rainey_test/intuition-", i, ".pdf"), | |
height = 3, width = 5) | |
} | |
gg_ests_df <- ests_df %>% | |
mutate(method = fct_recode(method, | |
`Maximum Likelihood` = "mle", | |
`Average of Simulations` = "avg."), | |
quantity = fct_recode(quantity, | |
`hat(tau)` = "tau", | |
`hat(mu)` = "mu")) | |
ggplot(gg_ests_df, aes(x = est, fill = method, color = method)) + | |
geom_density(alpha = 0.2) + | |
facet_wrap(~ quantity, scales = "free", labeller = label_parsed) + | |
scale_fill_manual(values = c("#7570b3", "#1b9e77")) + | |
scale_color_manual(values = c("#7570b3", "#1b9e77")) + | |
theme_minimal() + | |
labs(x = "Estimate", | |
y = "Density", | |
fill = "Method", | |
color = "Method") | |
#ggsave("doc/figs/intuition-sampling.pdf", height = 3, width = 9) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment