Skip to content

Instantly share code, notes, and snippets.

@chrisyco
Created March 25, 2012 20:47
Show Gist options
  • Save chrisyco/2199633 to your computer and use it in GitHub Desktop.
Save chrisyco/2199633 to your computer and use it in GitHub Desktop.
Initial attempt at lambda expression data structure
-- |
-- Module : Saliva.Model.OldExp
-- Copyright : GPLv3
--
-- Maintainer : [email protected]
-- Portability : portable
--
-- The 'Exp' data type, for representing lambda expressions.
module Saliva.Model.OldExp
(
-- * Types
Nat
, Exp
) where
-- | A non-negative number.
--
-- I'll eventually switch to Peano numerals for this, but we can live
-- with plain ints for now.
type Nat = Int
-- | A lambda expression.
data Exp
-- | Reference to an argument, as a zero-based De Bruijn index.
= Ref Nat
-- | Lambda abstraction.
| Lam Exp
-- | Function application.
| App Exp Exp
deriving (Eq, Show)
-- | Shift all the free variables down by one. Any values that fall
-- below zero are replaced with the supplied value.
shiftDown :: Exp -- ^ Replacement value
-> Exp -- ^ Expression to shift
-> Exp
shiftDown = go 0
where
go k v exp = case exp of
Ref n
| n < k -> Ref n
| n == k -> v
| n > k -> Ref (pred n)
Lam e -> Lam (go (succ k) (shiftUp v) e)
App x y -> App (go k v x) (go k v y)
-- | Shift all the free variables up by one.
shiftUp :: Exp -- ^ Expression to shift
-> Exp
shiftUp = go 0
where
go k exp = case exp of
Ref n
| n < k -> Ref n
| n >= k -> Ref (succ n)
Lam e -> Lam (go (succ k) e)
App x y -> App (go k x) (go k y)
evalHNF :: Exp -> Exp
evalHNF exp = case exp of
Ref n -> Ref n
Lam e -> Lam (evalHNF e)
App (Lam e) v -> shiftDown v e
App x y -> App (evalHNF x) (evalHNF y)
r0, r1, r2 :: Exp
r0 = Ref 0
r1 = Ref 1
r2 = Ref 2
λ, λλ, λλλ :: Exp -> Exp
λ = Lam
λλ = Lam . Lam
λλλ = Lam . Lam . Lam
infixl 2 !
(!) :: Exp -> Exp -> Exp
(!) = App
s, k, i, y :: Exp
s = λλλ ((r2 ! r0) ! (r1 ! r0))
k = λλ r1
i = λ r0
y = λ (inner ! inner)
where
inner = λ (r1 ! (r0 ! r0))
church :: Int -> Exp
church n
| n < 0 = error "Church numerals cannot be negative"
| otherwise = λλ (foldr (!) r0 (replicate n r1))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment