Created
June 14, 2016 15:01
-
-
Save cigrainger/77aa6cc65ce2faf087becc371f65a3f2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(dplyr) | |
df <- read_csv('~/desktop/guns.csv') | |
library(ggplot2) | |
library(ggthemes) | |
df %>% | |
arrange(desc(guns_per_100_people)) %>% | |
top_n(n = 20, wt = guns_per_100_people) %>% | |
ggplot(aes(x = country, | |
y = guns_per_100_people)) + | |
geom_bar(stat = 'identity') + | |
xlab('') + | |
ylab('Guns per 100 people') + | |
coord_flip() + | |
theme_tufte() | |
us_guns <- df$guns_per_100_people[df$country == 'United States']) | |
df %>% | |
select(guns_per_100_people, | |
country) %>% | |
na.omit() %>% | |
ggplot(aes(x = guns_per_100_people)) + | |
geom_histogram(aes(y = ..density..), | |
binwidth = 2.5, | |
colour = 'black', | |
fill= 'white') + | |
geom_density(alpha = .2, | |
fill= '#FF6666') + | |
geom_vline(aes(xintercept = mean(guns_per_100_people), | |
color= 'red', | |
linetype= 'dashed', | |
size = 0.5) + | |
geom_vline(aes(xintercept = us_guns, | |
color= 'blue', | |
linetype= 'dashed', | |
size = 0.5) + | |
scale_x_continuous() + | |
expand_limits(x = c(0,100)) + | |
xlab('Guns per 100 people') + | |
ylab('') + | |
theme_tufte() | |
US <- df$guns_per_100_people[df$country == 'United States'] | |
mu <- mean(df$guns_per_100_people, na.rm = T) | |
s <- sd(df$guns_per_100_people, na.rm = T) | |
(US - mu)/s | |
df %>% | |
select(homicides_by_guns_per_100k_people, | |
country) %>% | |
na.omit() %>% | |
arrange(desc(homicides_by_guns_per_100k_people)) %>% | |
top_n(n = 20, | |
wt = homicides_by_guns_per_100k_people) %>% | |
ggplot(aes(x = country, | |
y = homicides_by_guns_per_100k_people)) + | |
geom_bar(stat = 'identity') + | |
xlab('') + | |
ylab('Homicides by guns per 100k people') + | |
coord_flip() + | |
theme_tufte() | |
oecd_list <- data.frame(country = c( | |
'Australia', 'Austria', 'Belgium', 'Canada', | |
'Chile', 'Czech Republic', 'Denmark', 'Estonia', | |
'Finland', 'France', 'Germany', 'Greece', | |
'Hungary', 'Iceland', 'Ireland', 'Israel', | |
'Italy', 'Japan', 'South Korea', 'Luxembourg', 'Mexico', | |
'Netherlands', 'New Zealand', 'Norway', 'Poland', | |
'Portugal', 'Slovakia', 'Slovenia', | |
'Spain', 'Sweden', 'Switzerland', 'Turkey', | |
'England and Wales', 'Scotland', 'United States')) | |
df %>% | |
inner_join(oecd_list) %>% | |
select(homicides_by_guns_per_100k_people, | |
country) %>% | |
na.omit() %>% | |
arrange(desc(homicides_by_guns_per_100k_people)) %>% | |
top_n(n = 20, | |
wt = homicides_by_guns_per_100k_people) %>% | |
ggplot(aes(x = country, | |
y = homicides_by_guns_per_100k_people)) + | |
geom_bar(stat = 'identity') + | |
xlab('') + | |
ylab('Homicides by guns per 100k people') + | |
coord_flip() + | |
theme_tufte() | |
oecd_list <- filter(oecd_list, country != 'Mexico') | |
us_homicides <- df$homicides_by_guns_per_100k_people[df$country == 'United States'] | |
df %>% | |
inner_join(oecd_list) %>% | |
select(homicides_by_guns_per_100k_people, | |
country) %>% | |
na.omit() %>% | |
ggplot(aes(x = homicides_by_guns_per_100k_people)) + | |
geom_histogram(aes(y = ..density..), | |
binwidth = 0.2, | |
colour = 'black', | |
fill= 'white') + | |
geom_density(alpha = .2, | |
fill= '#FF6666') + | |
geom_vline(aes(xintercept = mean(homicides_by_guns_per_100k_people, | |
na.rm = T)), | |
color = 'red', | |
linetype = 'dashed', | |
size = 0.5) + | |
geom_vline(aes(xintercept=us_homicides, | |
color = 'blue', | |
linetype = 'dashed', | |
size = 0.5) + | |
scale_x_continuous() + | |
ylab('') + | |
expand_limits(x = c(0,4)) + | |
xlab('Homicides by guns per 100k people') + | |
theme_tufte() | |
df %>% | |
select(guns_per_100_people, homicides_by_guns_per_100k_people, | |
country) %>% | |
na.omit() %>% | |
mutate(us = ifelse(country == 'United States', 1, 0)) %>% | |
ggplot(aes(x = guns_per_100_people, | |
y = homicides_by_guns_per_100k_people, | |
colour = factor(us))) + | |
geom_point() + | |
xlab('Guns per 100 people') + | |
ylab('Homicides by guns per 100k people') + | |
scale_color_manual(values = c('black', 'red'), | |
guide = FALSE) + | |
theme_tufte() | |
df %>% | |
inner_join(oecd_list) %>% | |
select(guns_per_100_people, | |
homicides_by_guns_per_100k_people, | |
country) %>% | |
na.omit() %>% | |
mutate(us = ifelse(country == 'United States', 1, 0)) %>% | |
ggplot(aes(x = guns_per_100_people, | |
y = homicides_by_guns_per_100k_people, | |
colour = factor(us))) + | |
geom_point() + | |
xlab('Guns per 100 people') + | |
ylab('Homicides by guns per 100k people') + | |
scale_color_manual(values = c('black', 'red'),guide=FALSE) + | |
expand_limits(x = c(0,100), y = c(0,4)) + | |
theme_tufte() | |
df %>% | |
select(guns_per_100_people, | |
percent_homicides_by_guns, | |
country) %>% | |
na.omit() %>% | |
mutate(us = ifelse(country == 'United States', 1, 0)) %>% | |
ggplot(aes(x = guns_per_100_people, | |
y = percent_homicides_by_guns, | |
colour = factor(us))) + | |
geom_point() + | |
xlab('Guns per 100 people') + | |
ylab('% of total homicides by guns') + | |
scale_color_manual(values = c('black', 'red'), | |
guide = FALSE) + | |
theme_tufte() | |
df %>% | |
inner_join(oecd_list) %>% | |
select(guns_per_100_people, | |
percent_homicides_by_guns, | |
country) %>% | |
na.omit() %>% | |
mutate(us = ifelse(country == 'United States', 1, 0)) %>% | |
ggplot(aes(x = guns_per_100_people, | |
y = percent_homicides_by_guns, | |
colour = factor(us))) + | |
geom_point() + | |
xlab('Guns per 100 people') + | |
ylab('% of total homicides by guns') + | |
scale_color_manual(values = c('black', 'red'),guide=FALSE) + | |
expand_limits(x = c(0,100), y = c(0,4)) + | |
theme_tufte() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment