Created
August 17, 2014 22:51
-
-
Save cigrainger/ae481df20bac8dfb8b91 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import pystan | |
df = pd.read_csv('firms.csv') | |
df = df.dropna() | |
country = pd.Categorical(df.country) | |
year = pd.Categorical(df.year) | |
nace = pd.Categorical(df.nace) | |
bvd_id = pd.Categorical(df.bvd_id) | |
logit_code = """ | |
data { | |
int<lower=0> N; | |
int<lower=0> n_year; | |
int<lower=0> n_country; | |
int<lower=0> n_nace; | |
int<lower=0,upper=n_year> year[N]; | |
int<lower=0,upper=n_country> country[N]; | |
int<lower=0,upper=n_nace> nace[N]; | |
vector[N] assets; | |
vector[N] turnover; | |
vector<lower=0>[N] stock; | |
int<lower=0,upper=1> y[N]; | |
} | |
parameters { | |
vector[n_year] b_year; | |
vector[n_country] b_country; | |
vector[n_nace] b_nace; | |
vector[4] beta; | |
real mu; | |
real mu_year; | |
real mu_firm; | |
real mu_country; | |
real mu_nace; | |
real<lower=0,upper=100> sigma_year; | |
real<lower=0,upper=100> sigma_country; | |
real<lower=0,upper=100> sigma_nace; | |
} | |
transformed parameters { | |
vector[N] y_hat; | |
for (i in 1:N) | |
y_hat[i] <- beta[1] + beta[2]*assets[i] + beta[3]*turnover[i] + beta[4]*stock[i] + b_year[year[i]] + b_country[country[i]] + b_nace[nace[i]]; | |
} | |
model { | |
b_year ~ normal (0, sigma_year); | |
b_country ~ normal (0, sigma_country); | |
b_nace ~ normal (0, sigma_nace); | |
beta ~ normal (0, 100); | |
y ~ bernoulli_logit(y_hat); | |
} | |
""" | |
regress_dat = { | |
'N' : len(df), | |
'y' : df.onepat.tolist(), | |
'assets' : df.assets.tolist(), | |
'turnover' : df.turnover.tolist(), | |
'stock' : df.stock.tolist(), | |
'n_year' : len(pd.unique(df.year)), | |
'n_country' : len(pd.unique(df.country)), | |
'n_nace' : len(pd.unique(df.nace)), | |
'year' : year.labels.tolist(), | |
'country' : country.labels.tolist(), | |
'nace' : nace.labels.tolist() | |
} | |
fit = pystan.stan(model_code=logit_code, data=regress_dat, iter=25000, chains=4, n_jobs=4) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment