Created
January 31, 2019 15:03
-
-
Save cimentadaj/19128a958bcb6ffe21d66f28ff8e1015 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Redo of this post https://www.brodrigues.co/blog/2018-11-25-tidy_cv/ | |
library("tidyverse") | |
library("tidymodels") | |
library("brotools") | |
library("mlbench") | |
set.seed(231451) | |
data("BostonHousing2") | |
head(BostonHousing2) | |
boston <- | |
BostonHousing2 %>% | |
select(-medv, -town, -lon, -lat) %>% | |
rename(price = cmedv) %>% | |
as_tibble() | |
train_test_split <- initial_split(boston, prop = 0.9) | |
housing_train <- training(train_test_split) | |
housing_test <- testing(train_test_split) | |
validation_data <- mc_cv(housing_train, prop = 0.9, times = 30) | |
simple_recipe <- function(dt) { | |
dt %>% | |
recipe(price ~ .) %>% | |
step_center(all_numeric()) %>% | |
step_scale(all_numeric()) %>% | |
step_dummy(all_nominal()) | |
} | |
train_rec <- prep(simple_recipe(housing_train)) | |
test_data <- bake(train_rec, new_data = housing_test) | |
train_data <- juice(train_rec) | |
mod_obj <- linear_reg() %>% set_engine("lm") | |
estimate <- | |
mod_obj %>% | |
fit(formula(train_rec), data = train_data) %>% | |
predict_numeric(new_data = test_data) | |
predict_data <- tibble(truth = test_data$price, estimate = estimate) | |
rmse(predict_data, truth = truth, estimate = estimate) | |
fit_rf <- function(mtry, trees, rsplit, id) { | |
train_raw <- analysis(rsplit) | |
test_raw <- assessment(rsplit) | |
train_rec <- prep(simple_recipe(train_raw)) | |
train_data <- juice(train_rec) | |
test_data <- bake(train_rec, new_data = test_raw) | |
mod_obj <- | |
rand_forest(mode = 'regression', | |
trees = trees, | |
mtry = mtry) %>% | |
set_engine("ranger", importance = "impurity") | |
model_fit <- | |
fit(object = mod_obj, | |
formula = formula(train_rec), | |
data = train_data) | |
output <- tibble( | |
id = id, | |
truth = test_data$price, | |
estimate = predict_numeric(model_fit, new_data = test_data) | |
) | |
output | |
} | |
complete_predictions <- map2_df(validation_data$splits, validation_data$id, ~ fit_rf(3, 200, .x, .y)) | |
complete_predictions %>% | |
group_by(id) %>% | |
rmse(truth, estimate) %>% | |
summarize(avg_rmse = mean(.estimate), | |
sd = sd(.estimate), | |
ci_low = avg_rmse - (1.96 * sd), | |
ci_high = avg_rmse + (1.96 * sd)) | |
tuning <- function(x, rsplit) { | |
mtry <- x[1] | |
trees <- x[2] | |
complete_predictions <- map2_df(rsplit$splits, rsplit$id, ~ fit_rf(mtry, trees, .x, .y)) | |
complete_predictions %>% | |
group_by(id) %>% | |
rmse(truth, estimate) %>% | |
summarize(avg_rmse = mean(.estimate), | |
sd = sd(.estimate), | |
ci_low = avg_rmse - (1.96 * sd), | |
ci_high = avg_rmse + (1.96 * sd)) %>% | |
pull(avg_rmse) | |
} | |
tuning(3, 200, validation_data) | |
grid_search <- crossing(mtry = 3, trees = 200:300) | |
final_results <- | |
grid_search %>% | |
mutate(rmse = map2_dbl(mtry, trees, ~ tuning(.x, .y, validation_data))) | |
final_results %>% | |
ggplot(aes(x = trees, y = rmse)) + | |
geom_line(colour = "#82518c") + | |
theme_blog() + | |
ggtitle("RMSE for mtry = 3") | |
library("mlrMBO") | |
fn <- makeSingleObjectiveFunction(name = "tuning", | |
fn = tuning, | |
par.set = makeParamSet(makeIntegerParam("x1", lower = 3, upper = 8), | |
makeIntegerParam("x2", lower = 50, upper = 500))) | |
library(lhs)# for randomLHS | |
des <- generateDesign(n = 5L * 2L, getParamSet(fn), fun = randomLHS) | |
surrogate <- makeLearner("regr.ranger", predict.type = "se", keep.inbag = TRUE) | |
# Set general controls | |
ctrl <- makeMBOControl() | |
ctrl <- setMBOControlTermination(ctrl, iters = 10L) | |
ctrl <- setMBOControlInfill(ctrl, crit = makeMBOInfillCritEI()) | |
result <- mbo(fn, des, surrogate, ctrl, more.args = list("validation_data" = validation_data)) | |
training_rec <- prep(simple_recipe(housing_train), testing = housing_train) | |
train_data <- bake(training_rec, newdata = housing_train) | |
final_model <- rand_forest(mtry = 6, trees = 381) %>% | |
set_engine("ranger", importance = 'impurity') %>% | |
fit(price ~ ., data = train_data) | |
price_predict <- predict(final_model, new_data = select(test_data, -price)) | |
cbind(price_predict * sd(housing_train$price) + mean(housing_train$price), | |
housing_test$price) | |
tibble::tibble("truth" = test_data$price, | |
"prediction" = unlist(price_predict)) %>% | |
rmse(truth, prediction) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment