Created
January 23, 2023 15:29
-
-
Save cindyangelira/2ecefaaef08921c34e9ea1083ce943cb to your computer and use it in GitHub Desktop.
Configuration Streamlit
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Set page config | |
st.set_page_config( | |
page_title="Customer Behavior Analysis", | |
page_icon="📊", | |
layout="wide" | |
) | |
st.title("Customer Behavior Analysis", anchor="customer-behavior-analysis") | |
# Upload file | |
uploaded_file = st.file_uploader("Please Import Your Transaction Data", type="csv") | |
if uploaded_file is None: | |
data = pd.read_csv("data/data.csv", encoding='latin-1') | |
df1 = preprocessing(data) | |
st.subheader("Dataset") | |
col1, col2, col3 = st.columns(3) | |
col1.metric("Number of Transactions", df1.InvoiceNo.nunique()) | |
col2.metric("Number of Customers", df1.CustomerID.nunique()) | |
col3.metric("Average Revenue", f'${round(df1.Total.sum()/df1.InvoiceNo.nunique(),2)}') | |
c = st.empty() | |
# Add image | |
url = "https://www.kaggle.com/carrie1/ecommerce-data" | |
st.image("data/image.png", width=750) | |
st.caption("🗳 Source : Kaggle [link](%s) " % url, unsafe_allow_html=True) | |
else: | |
df1 = pd.read_csv(uploaded_file, encoding='latin-1') | |
c = st.empty() | |
c.dataframe(df1.head(7)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment