Last active
February 10, 2016 15:13
-
-
Save cjayb/a6d64883a7e04c2668d6 to your computer and use it in GitHub Desktop.
Dipole modeling and topomaps
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from os import path as op | |
import numpy as np | |
# from scipy import linalg | |
import mne | |
data_path = mne.datasets.sample.data_path() | |
subjects_dir = op.join(data_path, 'subjects') | |
fname_ave = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') | |
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif') | |
fname_bem = op.join(subjects_dir, 'sample', 'bem', | |
'sample-5120-5120-5120-bem-sol.fif') | |
fname_trans = op.join(data_path, 'MEG', 'sample', | |
'sample_audvis_raw-trans.fif') | |
evoked = mne.read_evokeds(fname_ave, condition='Right Auditory', | |
baseline=(None, 0)) | |
evoked.pick_types(meg=True, eeg=True) | |
info = evoked.info | |
cov = mne.read_cov(fname_cov) | |
# first time point has 2 (simultaneous) dipoles, second one is close to radial | |
# but second dipole is invalid (500 mm z-coord) and therefore omitted | |
times = np.array([0.0, 0.0, 0.001]) # first two, then one dipole | |
gof = 1.0 | |
pos = np.array([[-0.060, -0.010, 0.060], | |
[0.050, -0.010, 0.50], # this dipole is INVALID (min_dist) | |
[0.00, 0.050, 0.050]]) # (n_dipoles, 3) [m] | |
amp = np.array([20e-9, -20e-9, 40e-9]) # (n_dipoles,) [Am] | |
ori = np.array([[0., 1.0, 1.0], | |
[0., 1.0, 1.0], | |
[0., 1.0, 1.0]]) # (n_dipoles, 3) | |
ori_amp = np.diag(np.sqrt(np.dot(ori, ori.T))) | |
ori_norm = np.dot(np.diag(1./ori_amp), ori) | |
# create a Dipole, coordinates in HEAD frame | |
dipoles = mne.dipole.Dipole(times, pos, amp, ori_norm, gof) | |
# NB returning the stc and fwd means we don't have to recalculate when | |
# adding noise!! | |
stc, fwd = mne.simulation.simulate_stc_from_dipole(dipoles, fname_bem, info, | |
trans=fname_trans) | |
dipevo = mne.simulation.simulate_evoked(fwd, stc, info, None, snr=np.inf) | |
uniqts = dipevo.times | |
dipevo.plot_topomap(times=uniqts, ch_type='mag', outlines='skirt') | |
dipevo.plot_topomap(times=uniqts, ch_type='eeg', outlines='skirt') | |
# use covariance matrix to add a little noise (due to the way it's calculated | |
# the SNR here is not very realistic) | |
dipevo_noise = mne.simulation.simulate_evoked(fwd, stc, info, | |
cov, snr=15.) | |
uniqts = dipevo_noise.times | |
dipevo_noise.plot_topomap(times=uniqts, ch_type='mag', outlines='skirt') | |
dipevo_noise.plot_topomap(times=uniqts, ch_type='eeg', outlines='skirt') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment