Created
February 12, 2021 11:11
-
-
Save cjayb/c8df888ef5c328b846535cf0933e7f55 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os.path as op | |
import hnn_core | |
from hnn_core import read_params, Network | |
import matplotlib.pyplot as plt | |
from hnn_core.network_builder import NetworkBuilder | |
from hnn_core.network_builder import _simulate_single_trial | |
from neuron import h | |
import numpy as np | |
from scipy.optimize import curve_fit | |
def fitfun(x, a, b, c): | |
return a * np.exp(-b * x) + c | |
hnn_core_root = op.dirname(hnn_core.__file__) | |
params_fname = op.join(hnn_core_root, 'param', 'default.json') | |
params = read_params(params_fname) | |
params.update({'N_pyr_x': 3, | |
'N_pyr_y': 3, | |
'tstop': 5000.}) | |
n_pyrs = 9 | |
net = Network(params) | |
net._instantiate_drives(n_trials=1) | |
L5_pyr_gid = net.gid_ranges['L5_pyramidal'][0] | |
L2_pyr_gid = net.gid_ranges['L2_pyramidal'][0] | |
neuron_net = NetworkBuilder(net, trial_idx=0) | |
dpl = _simulate_single_trial(neuron_net, 0) | |
L5_steady_state = dpl.data['L5'][-1] / n_pyrs | |
L2_steady_state = dpl.data['L2'][-1] / n_pyrs | |
fig, axs = plt.subplots(1, 2) | |
axs[0].plot(dpl.times, dpl.data['L5'] / n_pyrs) | |
axs[0].axhline(L5_steady_state, linestyle='--', color='red', | |
label=f'{L5_steady_state:.5e}') | |
axs[0].legend() | |
axs[1].plot(dpl.times, dpl.data['L2'] / n_pyrs) | |
axs[1].axhline(L2_steady_state, linestyle='--', color='red', | |
label=f'{L2_steady_state:.5e}') | |
axs[1].legend() | |
# plot the L5 initial segment | |
tinds = np.where(dpl.times < 100.) | |
L5_upclose = dpl.data['L5'][tinds] | |
plt.plot(dpl.times[tinds], L5_upclose) | |
# fit form 20 ms | |
p0 = (-0.3e3 / n_pyrs, 2e-3, L5_steady_state / n_pyrs) | |
tinds = np.where(dpl.times > 20) | |
ydata = dpl.data['L5'][tinds] / n_pyrs | |
popt, pcov = curve_fit(fitfun, dpl.times[tinds], ydata, p0=p0) | |
legstr = 'fit: {:.2e} x \n exp( {:.2e} t ) + {:.2e}'.format(*popt) | |
plt.figure() | |
plt.plot(dpl.times, dpl.data['L5'] / n_pyrs) | |
plt.plot(dpl.times[tinds], fitfun(dpl.times[tinds], *popt), | |
linestyle='--', label=legstr) | |
plt.xlabel('Time (ms)') | |
plt.legend() | |
plt.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) | |
print('Fit params (L5): {:.5e} * np.exp({:.5e} * t) + {:.5e}'.format(*popt)) | |
print(f'Fit params (L2): {L2_steady_state:.5e}') | |
# Fit params (L5): -4.60641e+00 * np.exp(2.51721e-03 * t) + -4.80496e+01 | |
# Fit params (L2): 4.43005e-02 | |
# This should be run after _simulate_single_trial | |
# get steady-state values for L5 pyramidals | |
seclist = h.SectionList() | |
seclist.wholetree(sec=neuron_net.cells[L5_pyr_gid].soma) | |
for sect in seclist: | |
print(f"'{sect.name()}': [", end='') | |
for seg in sect: | |
print(f'{seg.v},') | |
print('],') | |
# '<L5Pyr | soma: L 39.000000, diam 28.900000, Ra 200.000000, cm 0.850000>.L5Pyr_soma': [-71.99659698854643, | |
# ], | |
# 'L5Pyr_basal_1': [-72.02954647612275, | |
# ], | |
# 'L5Pyr_apical_trunk': [-71.99291957918324, | |
# -71.98551742625942, | |
# -71.97715674520684, | |
# ], | |
# 'L5Pyr_basal_3': [-72.06262357371888, | |
# -72.07093175190667, | |
# -72.07699267334765, | |
# -72.08091331425713, | |
# -72.08280972750579, | |
# ], | |
# 'L5Pyr_basal_2': [-72.06262357371888, | |
# -72.07093175190667, | |
# -72.07699267334765, | |
# -72.08091331425713, | |
# -72.08280972750579, | |
# ], | |
# 'L5Pyr_apical_oblique': [-71.98173167226447, | |
# -71.99604815550023, | |
# -72.00643562257369, | |
# -72.01311793566057, | |
# -72.01633184996282, | |
# ], | |
# 'L5Pyr_apical_1': [-71.95478360746081, | |
# -71.91629048542289, | |
# -71.87472632967865, | |
# -71.83008375033546, | |
# -71.78236437694262, | |
# -71.73158238928728, | |
# -71.67776729748056, | |
# -71.62096774371555, | |
# -71.56125603324949, | |
# -71.49873368682518, | |
# -71.43353829740335, | |
# -71.36584997180377, | |
# -71.29589980384837, | |
# ], | |
# 'L5Pyr_apical_2': [-71.17714911653867, | |
# -71.00881744257748, | |
# -70.8377556814502, | |
# -70.6641370708994, | |
# -70.48824928295832, | |
# -70.3105072818248, | |
# -70.13147531257948, | |
# -69.95186936752486, | |
# -69.77262211942187, | |
# -69.5949770788285, | |
# -69.42047576454539, | |
# -69.25102045904973, | |
# -69.08894300326746, | |
# ], | |
# 'L5Pyr_apical_tuft': [-68.86888820906418, | |
# -68.59550615150705, | |
# -68.3391034373857, | |
# -68.10239662633921, | |
# -67.88885381988956, | |
# -67.70294104630771, | |
# -67.55040156735672, | |
# -67.43851485243435, | |
# -67.37658802902182, | |
# ], | |
# Layer 2 | |
seclist = h.SectionList() | |
seclist.wholetree(sec=neuron_net.cells[L2_pyr_gid].soma) | |
for sect in seclist: | |
print(f"'{sect.name()}': [", end='') | |
for seg in sect: | |
print(f'{seg.v},') | |
print('],') | |
# '<L2Pyr | soma: L 22.100000, diam 23.400000, Ra 200.000000, cm 0.619500>.L2Pyr_soma': [-71.46251994264288, | |
# ], | |
# 'L2Pyr_basal_1': [-71.46376735038517, | |
# ], | |
# 'L2Pyr_apical_trunk': [-71.46414752119715, | |
# ], | |
# 'L2Pyr_basal_3': [-71.46542691374754, | |
# -71.46653303307605, | |
# -71.46735309117791, | |
# -71.46789528516324, | |
# -71.4681650341793, | |
# ], | |
# 'L2Pyr_basal_2': [-71.46542691374754, | |
# -71.46653303307605, | |
# -71.46735309117791, | |
# -71.46789528516324, | |
# -71.4681650341793, | |
# ], | |
# 'L2Pyr_apical_oblique': [-71.46621193907679, | |
# -71.46721246231539, | |
# -71.46803677278407, | |
# -71.46869006901264, | |
# -71.46917647061586, | |
# -71.46949904455353, | |
# -71.46965982467452, | |
# ], | |
# 'L2Pyr_apical_1': [-71.46630566733937, | |
# -71.46753494562554, | |
# -71.46862901749326, | |
# -71.4695932385707, | |
# -71.47043232819412, | |
# -71.47115039275037, | |
# -71.47175094597775, | |
# ], | |
# 'L2Pyr_apical_tuft': [-71.4723749447141, | |
# -71.4729782895952, | |
# -71.47342716185227, | |
# -71.47372468566407, | |
# -71.47387293171057, | |
# ], |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment