Last active
November 12, 2018 19:53
-
-
Save cjbayesian/88be3fdca8247a6f91074d9fda55f64b to your computer and use it in GitHub Desktop.
Plot a calibration plot with error bars. Optionally overlay v in each bin.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy import stats | |
import numpy as np | |
import matplotlib as plt | |
def beta_errors(num, denom): | |
return stats.beta.interval(.95, num+1, denom-num+1) | |
def calibration_curve_error_bars(a, p, n_bins=10): | |
pmin, pmax = p.min(), p.max() | |
pmin -= 1e-10 | |
binstarts = np.linspace(pmin, pmax, n_bins+1) | |
bincentres = binstarts[:-1] + (binstarts[1] - binstarts[0])/2.0 | |
numerators = np.zeros(n_bins) | |
denomonators = np.zeros(n_bins) | |
for b in range(n_bins): | |
idx_bin = (p > binstarts[b]) & (p <= binstarts[b+1]) | |
denomonators[b] = idx_bin.sum() | |
numerators[b] = a[idx_bin].sum() | |
errors = beta_errors(numerators, denomonators) | |
return bincentres, numerators, denomonators, errors | |
def plot_calibration_curve_error_bars(a, p, n_bins=10, ax=None, alpha=1.0, label='', | |
add_n=False): | |
x, n, d, err = calibration_curve_error_bars(a, p, n_bins) | |
if ax is None: | |
fig, ax = plt.subplots(1, 1) | |
nan_idx = (d != 0) | |
x_nanan = x[nan_idx] | |
n_nanan = n[nan_idx] | |
d_nanan = d[nan_idx] | |
err_nanan = err[0][nan_idx], err[1][nan_idx] | |
ax.errorbar(x_nanan, n_nanan/d_nanan, yerr=[n_nanan/d_nanan-err_nanan[0], err_nanan[1]-n_nanan/d_nanan],alpha=alpha,label=label) | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.set_ylabel("Fraction of positives",color='blue') | |
ax.set_xlabel("Mean predicted value") | |
if add_n: | |
ax2 = ax.twinx() | |
ax2.step(x_nanan,d_nanan,color='green',alpha=0.5) | |
ax2.set_ylabel('N', color='green') | |
ax2.tick_params(axis='y', labelcolor='green') | |
ax.plot([0, 1], [0, 1], "k:") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment