Skip to content

Instantly share code, notes, and snippets.

@cjpais
Created February 1, 2024 22:02
Show Gist options
  • Save cjpais/59fb7fcb5256ed0aea339b0a35eac899 to your computer and use it in GitHub Desktop.
Save cjpais/59fb7fcb5256ed0aea339b0a35eac899 to your computer and use it in GitHub Desktop.
llava 1.6 hack
import argparse
import glob
import os
import torch
from safetensors import safe_open
from safetensors.torch import save_file
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
safetensors = sorted(glob.glob(f"{args.model}/model*.safetensors"))
path = safetensors[-2] #-1 for 34b. TODO search for all of them and make checkpoints from there
newline = safetensors[0]
n_ckpt = safe_open(newline, framework="pt")
new_checkpoint = {}
for key in n_ckpt.keys():
if not key.startswith("model.image_newline"):
new_checkpoint[key] = n_ckpt.get_tensor(key)
save_file(new_checkpoint, newline)
checkpoint = safe_open(path, framework="pt")
mm_tensors = [k for k in checkpoint.keys() if k.startswith("model.mm_projector")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint.get_tensor(name).float() for name in mm_tensors}
torch.save(projector, f"{args.model}/llava.projector")
# build new tensors without the projector
# remove these tensors from the checkpoint and save it again
new_checkpoint = {}
for key in checkpoint.keys():
if not key.startswith("model.mm_projector"):
new_checkpoint[key] = checkpoint.get_tensor(key)
checkpoint = new_checkpoint
# BakLLaVA models contain CLIP tensors in it
clip_tensors = [k for k in checkpoint.keys() if k.startswith("model.vision_tower")]
if len(clip_tensors) > 0:
clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/llava.clip")
# remove these tensors
for name in clip_tensors:
del checkpoint[name]
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
save_file(checkpoint, path)
print("Done!")
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment