Created
May 3, 2017 07:01
-
-
Save ck196/168e521e3a680114b295c9598531667e to your computer and use it in GitHub Desktop.
age gender predict.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# Make sure that caffe is on the python path: | |
# export PYTHONPATH=${CAFFE_ROOT}/python | |
import caffe | |
import cv2 | |
class AgenDetector: | |
gen_net = None | |
age_net = None | |
apparent_age_net = None | |
loaded = False | |
@staticmethod | |
def init(age_model_file = "imdb_wiki/age.prototxt", | |
age_pretrained = "imdb_wiki/dex_imdb_wiki.caffemodel", | |
apparent_age_model_file = "imdb_wiki/age_apparent.prototxt", | |
apparent_age_pretrained = "imdb_wiki/dex_chalearn_iccv2015.caffemodel", | |
gen_model_file = "imdb_wiki/gender.prototxt", | |
gen_pretrained = "imdb_wiki/gender.caffemodel", | |
mean_file = "imdb_wiki/ilsvrc_2012_mean.npy", | |
gpu_mode = True): | |
if not AgenDetector.loaded: | |
AgenDetector.clean() | |
#Load face detector model | |
if not gpu_mode: | |
caffe.set_mode_cpu() | |
else: | |
caffe.set_mode_gpu() | |
#Load age prediction network model | |
AgenDetector.age_net = caffe.Classifier(age_model_file, age_pretrained, | |
mean=np.load(mean_file).mean(1).mean(1), | |
channel_swap=(2,1,0), | |
raw_scale=256, | |
image_dims=(224, 224)) | |
AgenDetector.apparent_age_net = caffe.Classifier(apparent_age_model_file, apparent_age_pretrained, | |
mean=np.load(mean_file).mean(1).mean(1), | |
channel_swap=(2,1,0), | |
raw_scale=256, | |
image_dims=(224, 224)) | |
#Load gender prediction network model | |
AgenDetector.gen_net = caffe.Classifier(gen_model_file, gen_pretrained, | |
mean=np.load(mean_file).mean(1).mean(1), | |
channel_swap=(2,1,0), | |
raw_scale=256, | |
image_dims=(224, 224)) | |
AgenDetector.loaded = True | |
@staticmethod | |
def clean(): | |
AgenDetector.gen_net = None | |
AgenDetector.age_net = None | |
AgenDetector.age_apparent_net = None | |
AgenDetector.loaded = False | |
def predict_one_face(self, input_image): | |
age_prediction = AgenDetector.age_net.predict([input_image]) | |
age_apparent_prediction = AgenDetector.apparent_age_net.predict([input_image]) | |
gen_prediction = AgenDetector.gen_net.predict([input_image]) | |
return age_prediction[0].argmax(), age_apparent_prediction[0].argmax(), gen_prediction[0].argmax() | |
def predict(self, image_path): | |
img = caffe.io.load_image(image_path) | |
return self.predict_one_face(img) | |
if __name__ == '__main__': | |
AgenDetector.init() | |
predictor = AgenDetector() | |
IMAGE_FILE = 'images/test.jpg' | |
print predictor.predict(IMAGE_FILE) | |
img = cv2.imread("images/test.jpg") | |
img /= 255. | |
img = img[:, :, (2, 1, 0)] | |
print predictor.predict_one_face(img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Where do I find all these files. I have searched on Internet, but cannot find. Can anyone provide the link.