- Ubuntu >= 14.04, GPU( >= 2GB), CUDA 7.5+, cuDnn 4.0.7+
- Install docker, docker-nvidia
docker pull ck196/py-faster-rcnn
Download pre-trained model. https://drive.google.com/open?id=0B4MXf_cfl_weOEMyTHVSRWF6M0U
name: "VGG_ILSVRC_16_layers" | |
layer { | |
name: 'input-data' | |
type: 'Python' | |
top: 'data' | |
top: 'im_info' | |
top: 'gt_boxes' | |
python_param { | |
module: 'roi_data_layer.layer' | |
layer: 'RoIDataLayer' |
name: "toyota_SSD_500x500_train" | |
layer { | |
name: "data" | |
type: "AnnotatedData" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { |
from __future__ import division, print_function, absolute_import | |
import pickle | |
import numpy as np | |
from PIL import Image | |
import tflearn | |
from tflearn.layers.core import input_data, dropout, fully_connected | |
from tflearn.layers.conv import conv_2d, max_pool_2d | |
from tflearn.layers.normalization import local_response_normalization | |
from tflearn.layers.estimator import regression |
name: "ResNet_VOC0712_SSD_300x300_train" | |
layer { | |
name: "data" | |
type: "AnnotatedData" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { |
import numpy as np | |
import matplotlib.pyplot as plt | |
#%matplotlib inline | |
import skimage | |
import skimage.io as skio | |
import os | |
from os import path |
name: "ResNet_VOC0712_SSD_500x500_train" | |
layer { | |
name: "data" | |
type: "AnnotatedData" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { |
from __future__ import division | |
import os | |
import math | |
import numpy as np | |
import json | |
from os import listdir | |
from os.path import isfile, join | |
#from nms.gpu_nms import gpu_nms | |
#import gpu_nms | |
import sys |
#!/bin/bash | |
set -x | |
set -e | |
LOG="testing_log.txt" | |
exec &> >(tee -a "$LOG") | |
echo Logging output to "$LOG" | |
rm -rf data/VOCdevkit2007/annotations_cache/annots.pkl |
docker pull ck196/py-faster-rcnn
Download pre-trained model. https://drive.google.com/open?id=0B4MXf_cfl_weOEMyTHVSRWF6M0U
import numpy as np | |
# Make sure that caffe is on the python path: | |
# export PYTHONPATH=${CAFFE_ROOT}/python | |
import caffe | |
import cv2 | |
class AgenDetector: | |
gen_net = None |