- Ubuntu >= 14.04, GPU( >= 2GB), CUDA 7.5+, cuDnn 4.0.7+
- Install docker, docker-nvidia
docker pull ck196/py-faster-rcnn
Download pre-trained model. https://drive.google.com/open?id=0B4MXf_cfl_weOEMyTHVSRWF6M0U
| name: "VGG_ILSVRC_16_layers" | |
| layer { | |
| name: 'input-data' | |
| type: 'Python' | |
| top: 'data' | |
| top: 'im_info' | |
| top: 'gt_boxes' | |
| python_param { | |
| module: 'roi_data_layer.layer' | |
| layer: 'RoIDataLayer' |
| name: "toyota_SSD_500x500_train" | |
| layer { | |
| name: "data" | |
| type: "AnnotatedData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { |
| from __future__ import division, print_function, absolute_import | |
| import pickle | |
| import numpy as np | |
| from PIL import Image | |
| import tflearn | |
| from tflearn.layers.core import input_data, dropout, fully_connected | |
| from tflearn.layers.conv import conv_2d, max_pool_2d | |
| from tflearn.layers.normalization import local_response_normalization | |
| from tflearn.layers.estimator import regression |
| name: "ResNet_VOC0712_SSD_300x300_train" | |
| layer { | |
| name: "data" | |
| type: "AnnotatedData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| #%matplotlib inline | |
| import skimage | |
| import skimage.io as skio | |
| import os | |
| from os import path |
| name: "ResNet_VOC0712_SSD_500x500_train" | |
| layer { | |
| name: "data" | |
| type: "AnnotatedData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { |
| from __future__ import division | |
| import os | |
| import math | |
| import numpy as np | |
| import json | |
| from os import listdir | |
| from os.path import isfile, join | |
| #from nms.gpu_nms import gpu_nms | |
| #import gpu_nms | |
| import sys |
| #!/bin/bash | |
| set -x | |
| set -e | |
| LOG="testing_log.txt" | |
| exec &> >(tee -a "$LOG") | |
| echo Logging output to "$LOG" | |
| rm -rf data/VOCdevkit2007/annotations_cache/annots.pkl |
docker pull ck196/py-faster-rcnn
Download pre-trained model. https://drive.google.com/open?id=0B4MXf_cfl_weOEMyTHVSRWF6M0U
| import numpy as np | |
| # Make sure that caffe is on the python path: | |
| # export PYTHONPATH=${CAFFE_ROOT}/python | |
| import caffe | |
| import cv2 | |
| class AgenDetector: | |
| gen_net = None |