Last active
March 19, 2022 23:15
-
-
Save ckesanapalli/878c379de6be758d45de73f6310181c0 to your computer and use it in GitHub Desktop.
Logging entry, exit and runtime of functions with a decorator using loguru module
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from loguru import logger | |
from more_loguru import logger_wraps | |
logger.add('test.log', mode='w') | |
@logger_wraps(debug_io=True) | |
def my_func(a, b, c=1, d="Text"): | |
"""A test function""" | |
time.sleep(1) | |
return str([a, b, c, d]) | |
func = my_func | |
my_func("hello", "logger", c="print this", d="keyword arg") | |
# Logging Existing library functions | |
import numpy as np | |
logger_wraps(debug_io=True)(np.random.rand)(10,10) | |
logger_wraps(log_full_doc=True)(np.sum)(np.random.rand(10,10)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from datetime import datetime | |
import functools | |
from loguru import logger | |
def dict2str(a_dict, indent=4): | |
"""Return formatted string version of dict""" | |
if len(a_dict) == 0: | |
return "{}" | |
max_key_len = max(len(key) for key in a_dict) | |
line_indent = "\n"+" "*indent | |
str_items = line_indent.join(f"{key}"+ " "*(max_key_len-len(key)) +f": {value}," | |
for key, value in a_dict.items()) | |
return "{" + line_indent + str_items + line_indent + "}" | |
def iter2str(a_list, indent=4, open_bracket="(", close_bracket=")"): | |
"""Return formatted string version of an iterator""" | |
if len(a_list) == 0: | |
return open_bracket+close_bracket | |
line_indent = "\n"+" "*indent | |
str_items = line_indent.join(str(value)+',' for value in a_list) | |
return open_bracket + line_indent + str_items + line_indent + close_bracket | |
def get_func_name(func): | |
"""Return the name of the given function including module name""" | |
if hasattr(func, '__module__') and func.__module__ != None: | |
func_name = '.'.join([func.__module__, func.__qualname__]) | |
else: | |
func_name = func.__qualname__ | |
return func_name | |
def get_func_small_doc(func): | |
"""Return first two lines from the function documentation""" | |
try: | |
split_doc = func.__doc__.split("\n") | |
if len(split_doc) < 2: | |
doc = ' '.join(split_doc).strip() | |
else: | |
doc = ' '.join(split_doc[:2]).strip() | |
except: | |
doc = None | |
return doc | |
def logger_wraps(*, func_entry=True, func_exit=True, level="DEBUG", | |
debug_io=False, debug_args=False, debug_kwargs=False, | |
debug_result=False, log_full_doc=False): | |
""" | |
A wrapper function to log the function entry, exit and runtime outputting arguments and results | |
Parameters | |
---------- | |
func_entry : bool, optional | |
Whether to log the entry of function. The default is True. | |
func_exit : bool, optional | |
Whether to log the exit of function. The default is True. | |
level : str, optional | |
logging level. The default is "DEBUG". | |
debug_io : bool, optional | |
Whether to log function inputs and output parameters. The default is False. | |
debug_args : bool, optional | |
Whether to log function arguments. The default is False. | |
debug_kwargs : bool, optional | |
Whether to log function keyword arguments. The default is False. | |
debug_result : bool, optional | |
Whether to log function result. The default is False. | |
is_full_doc : bool, optional | |
Whether to log full documentation of function. | |
If False, first two lines of function documentation are logged. | |
The default is False. | |
Returns | |
------- | |
decorator: | |
An object that can be used to decorate a function. | |
""" | |
def wrapper(func): | |
name = get_func_name(func) | |
doc = func.__doc__ if log_full_doc else get_func_small_doc(func) | |
@functools.wraps(func) | |
def wrapped(*args, **kwargs): | |
logger_ = logger.opt(depth=1) | |
if func_entry: | |
entry_dict = { | |
"State": "ENTRY", | |
"Function": name, | |
"Description": doc, | |
} | |
if debug_args or debug_io: | |
entry_dict["Args"] = iter2str(args, indent=22) | |
if debug_kwargs or debug_io: | |
entry_dict["Kwargs"] = dict2str(kwargs, indent=22) | |
entry_str = dict2str(entry_dict) | |
logger_.log(level, entry_str) | |
start = datetime.now() | |
result = func(*args, **kwargs) | |
end = datetime.now() | |
runtime = end - start | |
if func_exit: | |
exit_dict = { | |
"State": "EXIT", | |
"Function": name, | |
"Runtime": runtime, | |
} | |
if debug_result or debug_io: | |
exit_dict["Result"] = str(result) | |
exit_str = dict2str(exit_dict) | |
logger_.log(level, exit_str) | |
return result | |
return wrapped | |
return wrapper | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2022-03-17 13:35:57.119 | DEBUG | __main__:<module>:15 - { | |
State : ENTRY | |
Function : __main__.my_func | |
Description: A test function | |
Args : ( | |
hello | |
logger | |
) | |
Kwargs : { | |
c: print this | |
d: keyword arg | |
} | |
} | |
2022-03-17 13:35:58.136 | DEBUG | __main__:<module>:15 - { | |
State : EXIT | |
Function: __main__.my_func | |
Runtime : 0:00:01.013995 | |
Result : ['hello', 'logger', 'print this', 'keyword arg'] | |
} | |
2022-03-17 13:35:58.138 | DEBUG | __main__:<module>:19 - { | |
State : ENTRY | |
Function : RandomState.rand | |
Description: rand(d0, d1, ..., dn) | |
Args : ( | |
10 | |
10 | |
) | |
Kwargs : {} | |
} | |
2022-03-17 13:35:58.141 | DEBUG | __main__:<module>:19 - { | |
State : EXIT | |
Function: RandomState.rand | |
Runtime : 0:00:00.001005 | |
Result : [[0.15421369 0.10137913 0.91046302 0.43190587 0.29174799 0.71519251 | |
0.52935884 0.06936744 0.26859926 0.73353876] | |
[0.42048735 0.49197483 0.63040623 0.28178557 0.068379 0.06677066 | |
0.26446492 0.1479684 0.73640894 0.67122753] | |
[0.73802108 0.93509084 0.25294261 0.05860547 0.65150791 0.18761106 | |
0.48256235 0.2612798 0.31041145 0.2340653 ] | |
[0.52375654 0.68371864 0.30928983 0.87638674 0.70446178 0.2054611 | |
0.26661087 0.52606977 0.88117853 0.80641446] | |
[0.87759751 0.1872547 0.73896022 0.2782295 0.40346596 0.78815338 | |
0.88895959 0.31498619 0.12840834 0.8945755 ] | |
[0.48283961 0.16861856 0.66444653 0.76056871 0.96547068 0.71580742 | |
0.44246482 0.86323614 0.47825779 0.54422304] | |
[0.26766282 0.29110596 0.2603545 0.50927323 0.32419506 0.0094917 | |
0.05879885 0.03719602 0.49640424 0.12116557] | |
[0.9772078 0.37718526 0.64472585 0.14811863 0.94161187 0.86663402 | |
0.39839245 0.77827622 0.1294619 0.95028546] | |
[0.56660615 0.94056333 0.83124345 0.62046998 0.37744329 0.7341235 | |
0.4192672 0.3835191 0.53189709 0.76989918] | |
[0.83758544 0.57230601 0.62635092 0.02452058 0.78512488 0.28017589 | |
0.35995325 0.75439324 0.43808403 0.73764402]] | |
} | |
2022-03-17 13:35:58.142 | DEBUG | __main__:<module>:20 - { | |
State : ENTRY | |
Function : numpy.sum | |
Description: | |
Sum of array elements over a given axis. | |
Parameters | |
---------- | |
a : array_like | |
Elements to sum. | |
axis : None or int or tuple of ints, optional | |
Axis or axes along which a sum is performed. The default, | |
axis=None, will sum all of the elements of the input array. If | |
axis is negative it counts from the last to the first axis. | |
.. versionadded:: 1.7.0 | |
If axis is a tuple of ints, a sum is performed on all of the axes | |
specified in the tuple instead of a single axis or all the axes as | |
before. | |
dtype : dtype, optional | |
The type of the returned array and of the accumulator in which the | |
elements are summed. The dtype of `a` is used by default unless `a` | |
has an integer dtype of less precision than the default platform | |
integer. In that case, if `a` is signed then the platform integer | |
is used while if `a` is unsigned then an unsigned integer of the | |
same precision as the platform integer is used. | |
out : ndarray, optional | |
Alternative output array in which to place the result. It must have | |
the same shape as the expected output, but the type of the output | |
values will be cast if necessary. | |
keepdims : bool, optional | |
If this is set to True, the axes which are reduced are left | |
in the result as dimensions with size one. With this option, | |
the result will broadcast correctly against the input array. | |
If the default value is passed, then `keepdims` will not be | |
passed through to the `sum` method of sub-classes of | |
`ndarray`, however any non-default value will be. If the | |
sub-class' method does not implement `keepdims` any | |
exceptions will be raised. | |
initial : scalar, optional | |
Starting value for the sum. See `~numpy.ufunc.reduce` for details. | |
.. versionadded:: 1.15.0 | |
where : array_like of bool, optional | |
Elements to include in the sum. See `~numpy.ufunc.reduce` for details. | |
.. versionadded:: 1.17.0 | |
Returns | |
------- | |
sum_along_axis : ndarray | |
An array with the same shape as `a`, with the specified | |
axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar | |
is returned. If an output array is specified, a reference to | |
`out` is returned. | |
See Also | |
-------- | |
ndarray.sum : Equivalent method. | |
add.reduce : Equivalent functionality of `add`. | |
cumsum : Cumulative sum of array elements. | |
trapz : Integration of array values using the composite trapezoidal rule. | |
mean, average | |
Notes | |
----- | |
Arithmetic is modular when using integer types, and no error is | |
raised on overflow. | |
The sum of an empty array is the neutral element 0: | |
>>> np.sum([]) | |
0.0 | |
For floating point numbers the numerical precision of sum (and | |
``np.add.reduce``) is in general limited by directly adding each number | |
individually to the result causing rounding errors in every step. | |
However, often numpy will use a numerically better approach (partial | |
pairwise summation) leading to improved precision in many use-cases. | |
This improved precision is always provided when no ``axis`` is given. | |
When ``axis`` is given, it will depend on which axis is summed. | |
Technically, to provide the best speed possible, the improved precision | |
is only used when the summation is along the fast axis in memory. | |
Note that the exact precision may vary depending on other parameters. | |
In contrast to NumPy, Python's ``math.fsum`` function uses a slower but | |
more precise approach to summation. | |
Especially when summing a large number of lower precision floating point | |
numbers, such as ``float32``, numerical errors can become significant. | |
In such cases it can be advisable to use `dtype="float64"` to use a higher | |
precision for the output. | |
Examples | |
-------- | |
>>> np.sum([0.5, 1.5]) | |
2.0 | |
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) | |
1 | |
>>> np.sum([[0, 1], [0, 5]]) | |
6 | |
>>> np.sum([[0, 1], [0, 5]], axis=0) | |
array([0, 6]) | |
>>> np.sum([[0, 1], [0, 5]], axis=1) | |
array([1, 5]) | |
>>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1) | |
array([1., 5.]) | |
If the accumulator is too small, overflow occurs: | |
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) | |
-128 | |
You can also start the sum with a value other than zero: | |
>>> np.sum([10], initial=5) | |
15 | |
} | |
2022-03-17 13:35:58.144 | DEBUG | __main__:<module>:20 - { | |
State : EXIT | |
Function: numpy.sum | |
Runtime : 0:00:00 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment