Created
March 26, 2021 02:54
-
-
Save ckrapu/5f6a7db7bdd1e1ee924350143f2d6881 to your computer and use it in GitHub Desktop.
matrix-normal-failing-because-cov-matrix
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import aesara.tensor as at | |
import pymc3 as pm | |
np.random.seed(20090425) | |
n = 1 | |
p = 10 | |
k = 5 | |
t = 200 | |
W = np.random.normal(.1,.5,size=(p,k)) | |
lamb = np.diag(np.random.normal(10,.2,size=(k))) | |
C = np.matmul(np.matmul(W,lamb),W.T) | |
y = np.random.normal(.1,.5,size=(n,t,p)) | |
def beta_spike_slab(shape,spike): | |
inclusion_prop = 0.05 | |
beta_spike = pm.Normal('beta_spike', 0, spike, shape=shape) | |
beta_slab = pm.Normal('beta_slab', 10, shape=shape) | |
gamma = pm.Bernoulli('gamma', inclusion_prop, shape=shape) | |
beta_spike_slab = pm.Deterministic('beta_spike_slab',(beta_spike * (1-gamma)) + ((beta_slab * gamma))) | |
return beta_spike_slab | |
with pm.Model() as model: | |
beta = pm.HalfCauchy("beta", 4) | |
alpha = pm.HalfCauchy("alpha", 4) | |
W_t = beta_spike_slab((k,p),0.1) | |
A = pm.MvNormal("A", mu=np.zeros(k) , cov=alpha*np.eye(k), shape =(n,k), testval=np.random.normal(1,2,size=(n,k))) | |
for i in range(n): | |
z = pm.MvNormal("Z"+str(i), mu=np.zeros(k), cov=at.diag(at.squeeze(A[i,:])), shape=(t,k), testval=np.random.normal(.01,.02,size=(t,k))) | |
obs = np.squeeze(y[i,:,:]) | |
y_obs = pm.MatrixNormal("y_obs"+str(i), mu=(pm.math.dot(z,W_t)), colcov=0.1*(1/beta)*np.eye(p), rowcov=np.eye(t), observed=obs.reshape(t, p),shape=(t,p)) | |
tr = pm.sample(1000, tune=1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment