Created
April 23, 2021 16:28
-
-
Save ckrapu/60d79b53ab2070648d1ebfccb3e27159 to your computer and use it in GitHub Desktop.
fa-xr-ufunc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Y = xr.DataArray(Y_raw, dims=('observed_columns','rows')) | |
Y = Y.assign_coords({'observed_columns':np.arange(d),'rows':np.arange(n)}) | |
def post_hoc_fun(W, psi, Y, rng=None): | |
''' | |
Recovers latent variables given observation Y and single draw of W, psi | |
from the posterior distribution. | |
''' | |
k, d = W.shape[-2:] | |
_, n = Y.shape | |
WW = np.linalg.inv(np.einsum("...ji,...jk", W, W)) | |
WW_Wt = np.einsum("...ij,...kj", WW, W) | |
F_mu = np.einsum("...ij,...jk", 1 / np.sqrt(psi) * WW_Wt, Y) | |
WW_chol = np.linalg.cholesky(WW) | |
return F_mu + np.einsum("...ij,...jk", WW_chol, rng.standard_normal(size=(k, n))) | |
xr.apply_ufunc( | |
post_hoc_fun, | |
trace.posterior['W'], | |
trace.posterior['psi'], | |
Y, | |
input_core_dims=[['observed_columns', 'latent_columns'], | |
[], | |
["observed_columns","rows"]], | |
output_core_dims=[["latent_columns", "rows"]], | |
kwargs={"rng": rng} | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment