Last active
September 26, 2024 23:54
-
-
Save clayrat/8dad6a8efd7a78c38b68feed6737c554 to your computer and use it in GitHub Desktop.
KV lists
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Prelude | |
open import Data.Empty | |
open import Data.Bool renaming (elim to elimᵇ ; rec to recᵇ) | |
open import Data.Maybe | |
open import Data.List | |
open import Data.List.Operations.Discrete | |
open import Data.List.Correspondences.Unary.All | |
open import Data.List.Correspondences.Unary.Has | |
open import Data.List.Correspondences.Unary.Related | |
open import Data.List.Correspondences.Binary.Perm | |
open import Data.Dec | |
open import Data.Reflects | |
open import Data.Tri renaming (elim to elimᵗ ; rec to recᵗ) | |
open import Order.Strict | |
open import Order.Trichotomous | |
module KVList | |
{o ℓᵏ ℓᵛ : Level} | |
{K : StrictPoset o ℓᵏ} | |
{V : 𝒰 ℓᵛ} | |
⦃ d : is-trichotomous K ⦄ | |
where | |
open StrictPoset K public | |
lookup-kv : List (Ob × V) → Ob → Maybe V | |
lookup-kv [] k = nothing | |
lookup-kv ((x , v) ∷ l) k = | |
caseᵗ k >=< x | |
lt⇒ nothing | |
eq⇒ just v | |
gt⇒ lookup-kv l k | |
upsert-kv : List (Ob × V) → Ob → (V → V) → V → List (Ob × V) × Maybe V | |
upsert-kv [] k f v = (k , v) ∷ [] , nothing | |
upsert-kv l0@((x , w) ∷ l) k f v = | |
caseᵗ k >=< x | |
lt⇒ ((k , v) ∷ l0 , nothing) | |
eq⇒ ((k , f w) ∷ l , just w) | |
gt⇒ (first ((x , w) ∷_) (upsert-kv l k f v)) | |
remove-kv : List (Ob × V) → Ob → List (Ob × V) × Maybe V | |
remove-kv [] k = [] , nothing | |
remove-kv l0@((x , w) ∷ l) k = | |
caseᵗ k >=< x | |
lt⇒ (l0 , nothing) | |
eq⇒ (l , just w) | |
gt⇒ (first ((x , w) ∷_) (remove-kv l k)) | |
keys : List (Ob × V) → List Ob | |
keys = map fst | |
values : List (Ob × V) → List V | |
values = map snd | |
Is-kvlist : List (Ob × V) → 𝒰 (o ⊔ ℓᵏ) | |
Is-kvlist xs = Sorted _<_ (keys xs) | |
keys-++ : ∀ {xs ys} → keys (xs ++ ys) = keys xs ++ keys ys | |
keys-++ {xs} {ys} = map-++ fst xs ys | |
lookup-empty : lookup-kv [] = λ _ → nothing | |
lookup-empty = refl | |
Is-kvlist-empty : Is-kvlist [] | |
Is-kvlist-empty = []ˢ | |
lookup-related : ∀ {k xs} | |
→ Related _<_ k (keys xs) → lookup-kv xs k = nothing {- is-nothing? -} | |
lookup-related {xs = []} r = refl | |
lookup-related {k} {xs = (x , v) ∷ xs} (rx ∷ʳ r) = | |
caseᵗ k >=< x | |
return (λ q → recᵗ nothing (just v) (lookup-kv xs k) q = nothing) | |
of λ where | |
(lt _ _ _) → refl | |
(eq x≮y _ _) → absurd (x≮y rx) | |
(gt x≮y _ _) → absurd (x≮y rx) | |
lookup-sorted-cat-cons-cat : ∀ {xs ys k k′ v′} | |
→ Is-kvlist (xs ++ (k′ , v′) ∷ ys) | |
→ lookup-kv (xs ++ (k′ , v′) ∷ ys) k = (if ⌊ d .is-trichotomous.trisect k k′ ⌋< | |
then lookup-kv xs k | |
else lookup-kv ((k′ , v′) ∷ ys) k) | |
lookup-sorted-cat-cons-cat {xs = []} {ys} {k} {k′} {v′} s = | |
caseᵗ k >=< k′ | |
return (λ q → recᵗ nothing (just v′) (lookup-kv ys k) q | |
= (if ⌊ q ⌋< then nothing else recᵗ nothing (just v′) (lookup-kv ys k) q)) | |
of λ where | |
(lt x<y x≠y y≮x) → refl | |
(eq x≮y x=y y≮x) → refl | |
(gt x≮y x≠y y<x) → refl | |
lookup-sorted-cat-cons-cat {xs = (x , v) ∷ xs} {ys} {k} {k′} {v′} (∷ˢ r) = | |
let a = related→all (record { _∙_ = <-trans }) $ subst (λ q → Related _<_ x q) (keys-++ {xs = xs}) r | |
a0 , a′ = all-split {xs = keys xs} a | |
x<k′ , a1 = all-uncons a′ | |
in | |
caseᵗ k >=< x | |
return (λ q → recᵗ nothing (just v) (lookup-kv (xs ++ (k′ , v′) ∷ ys) k) q | |
= (if ⌊ d .is-trichotomous.trisect k k′ ⌋< | |
then recᵗ nothing (just v) (lookup-kv xs k) q | |
else recᵗ nothing (just v′) (lookup-kv ys k) (d .is-trichotomous.trisect k k′))) | |
of λ where | |
(lt k<x k≠x x≮k) → | |
given-lt <-trans k<x x<k′ | |
return (λ q → nothing = (if ⌊ q ⌋< then nothing else recᵗ nothing (just v′) (lookup-kv ys k) q)) | |
then refl | |
(eq k≮x k=x y≮x) → | |
given-lt subst (_< k′) (k=x ⁻¹) x<k′ | |
return (λ q → just v = (if ⌊ q ⌋< then just v else recᵗ nothing (just v′) (lookup-kv ys k) q)) | |
then refl | |
(gt k≮x k≠x x<k) → | |
lookup-sorted-cat-cons-cat (related→sorted r) | |
kvlist-upsert-perm : {k : Ob} {v : V} {f : V → V} {xs : List (Ob × V)} | |
→ Is-kvlist xs | |
→ Perm (keys (fst (upsert-kv xs k f v))) | |
(if has ⦃ d = Tri→discrete ⦄ k (keys xs) | |
then keys xs | |
else k ∷ keys xs) | |
kvlist-upsert-perm {k} {v} {f} {xs = []} ikv = perm-refl | |
kvlist-upsert-perm {k} {v} {f} {xs = (k′ , v′) ∷ xs} (∷ˢ r) = | |
caseᵗ k >=< k′ | |
return (λ q → Perm (keys (fst (recᵗ ((k , v) ∷ (k′ , v′) ∷ xs , nothing) | |
((k , f v′) ∷ xs , just v′) | |
(first ((k′ , v′) ∷_ ) (upsert-kv xs k f v)) | |
q))) | |
(if ⌊ ⌊ q ⌋≟ ⌋ or has ⦃ d = Tri→discrete ⦄ k (keys xs) | |
then k′ ∷ keys xs | |
else k ∷ k′ ∷ keys xs)) | |
of λ where | |
(lt _ _ k′≮k) → | |
elimᵇ {P = λ q → has ⦃ d = Tri→discrete ⦄ k (keys xs) = q | |
→ Perm (k ∷ k′ ∷ keys xs) | |
(if q then k′ ∷ keys xs else k ∷ k′ ∷ keys xs)} | |
(λ x → let hask = so→true! ⦃ Reflects-has ⦃ d = Tri→discrete ⦄ {xs = keys xs} ⦄ $ so≃is-true ⁻¹ $ x | |
all>k′ = related→all (record { _∙_ = <-trans }) r | |
in | |
absurd (k′≮k (All→∀Has all>k′ k hask))) | |
(λ _ → perm-refl) | |
(has ⦃ d = Tri→discrete ⦄ k (keys xs)) | |
refl | |
(eq _ k=k′ _) → pprep k=k′ perm-refl | |
(gt _ _ _) → | |
elimᵇ {P = λ q → Perm (keys (fst (upsert-kv xs k f v))) | |
(if q then keys xs else k ∷ keys xs) | |
→ Perm (k′ ∷ keys (fst (upsert-kv xs k f v))) | |
(if q then k′ ∷ keys xs else k ∷ k′ ∷ keys xs)} | |
(pprep refl) | |
(λ p → ptrans (pprep refl p) (perm-cons-cat-commassoc {xs = k ∷ []})) | |
(has ⦃ d = Tri→discrete ⦄ k (keys xs)) | |
(kvlist-upsert-perm {k = k} {v = v} {f = f} {xs = xs} (related→sorted r)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment