Last active
June 18, 2024 20:51
-
-
Save clayrat/c06132b1c15ea4136c8294dc74e1142c to your computer and use it in GitHub Desktop.
Jules' dependent prism
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module DepPrism where | |
open import Prelude | |
open import Data.Empty | |
open import Data.Sum | |
private variable | |
ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level | |
X : 𝒰 ℓ₁ | |
Y : 𝒰 ℓ₂ | |
A : X → 𝒰 ℓ₃ | |
B : Y → 𝒰 ℓ₄ | |
lim : {B : Y → 𝒰 ℓ₄} {x : X} → A x ⊎ Y → 𝒰 ℓ₄ | |
lim {ℓ₄} (inl _) = Lift ℓ₄ ⊥ | |
lim {B} (inr y) = B y | |
record DPrism (X : 𝒰 ℓ₁) (Y : 𝒰 ℓ₂) (A : X → 𝒰 ℓ₃) (B : Y → 𝒰 ℓ₄) : 𝒰 (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where | |
constructor dpr | |
field | |
fw : (x : X) → A x ⊎ Y | |
bw : (x : X) → lim {A = A} {B = B} (fw x) → A x | |
open DPrism | |
bweq : (d : DPrism X Y A B) | |
→ (x : X) → (y : Y) → d .fw x = inr y → B y → A x | |
bweq {B} d x y e by with d .fw x | recall (d .fw) x | |
... | inl _ | ⟪ _ ⟫ = absurd (⊎-disjoint e) | |
... | inr _ | ⟪ eq ⟫ = d .bw x (subst lim (eq ⁻¹) (subst B (inr-inj e ⁻¹) by)) | |
eqbw : (fw : (x : X) → A x ⊎ Y) | |
→ ((x : X) → (y : Y) → fw x = inr y → B y → A x) | |
→ DPrism X Y A B | |
eqbw {X} {A} {B} fw bw = dpr fw go | |
where | |
go : (x : X) → lim {A = A} {B = B} (fw x) → A x | |
go x with fw x | recall fw x | |
go x | inl _ | ⟪ eq ⟫ = λ () | |
go x | inr y | ⟪ eq ⟫ = bw x y eq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module DepPrism0 where | |
open import Prelude | |
open import Data.Empty | |
open import Data.Sum | |
private variable | |
ℓ₁ ℓ₂ ℓₛ ℓₜ : Level | |
X : 𝒰 ℓ₁ | |
Y : 𝒰 ℓ₂ | |
S : X → 𝒰 ℓₛ | |
T : Y → 𝒰 ℓₜ | |
lim : {T : Y → 𝒰 ℓₜ} {x : X} → S x ⊎ Y → 𝒰 ℓₜ | |
lim {ℓₜ} (inl _) = Lift ℓₜ ⊥ | |
lim {T} (inr y) = T y | |
record @0 DPrism (X : 𝒰 ℓ₁) (Y : 𝒰 ℓ₂) (S : X → 𝒰 ℓₛ) (T : Y → 𝒰 ℓₜ) : 𝒰 (ℓ₁ ⊔ ℓ₂ ⊔ ℓₛ ⊔ ℓₜ) where | |
constructor dpr | |
field | |
fw : (x : X) → S x ⊎ Y | |
bw : (@0 x : X) → lim {S = S} {T = T} (fw x) → S x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module DepPrismEq where | |
open import Prelude | |
open import Data.Empty | |
open import Data.Sum | |
private variable | |
ℓ₁ ℓ₂ ℓₛ ℓₜ : Level | |
record DPrism (X : 𝒰 ℓ₁) (Y : 𝒰 ℓ₂) (S : @0 X → 𝒰 ℓₛ) (T : @0 Y → 𝒰 ℓₜ) : 𝒰 (ℓ₁ ⊔ ℓ₂ ⊔ ℓₛ ⊔ ℓₜ) where | |
constructor dpr | |
field | |
fw : (x : X) → S x ⊎ Y | |
bw : (@0 x : X) → (@0 y : Y) → (@0 _ : fw x = inr y) → T y → S x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module DepPrism where | |
open import Prelude | |
open import Data.Empty | |
open import Data.Sum | |
private variable | |
ℓ₁ ℓ₂ ℓₛ ℓₜ : Level | |
X : 𝒰 ℓ₁ | |
Y : 𝒰 ℓ₂ | |
S : X → 𝒰 ℓₛ | |
T : Y → 𝒰 ℓₜ | |
lim : {T : Y → 𝒰 ℓₜ} {@0 x : X} → S x ⊎ Y → 𝒰 ℓₜ | |
lim {ℓₜ} (inl _) = Lift ℓₜ ⊥ | |
lim {T} (inr y) = T y | |
record DPrism (X : 𝒰 ℓ₁) (Y : 𝒰 ℓ₂) (S : X → 𝒰 ℓₛ) (T : Y → 𝒰 ℓₜ) : 𝒰 (ℓ₁ ⊔ ℓ₂ ⊔ ℓₛ ⊔ ℓₜ) where | |
constructor dpr | |
field | |
fw : (x : X) → S x ⊎ Y | |
bw : (@0 x : X) → Erased (lim {S = λ y → S (y .erased)} {T = T} (fw x) → S x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment