Last active
February 23, 2021 14:36
-
-
Save clintval/e9afc246e77f6488cda79f86e4d37148 to your computer and use it in GitHub Desktop.
k-means silhouette analysis using sklearn and matplotlib on Iris data.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.cm as cm | |
import matplotlib.pyplot as plt | |
from matplotlib.colors import colorConverter | |
__license__ = 'MIT' | |
__author__ = 'clintval' | |
def darken_rgb(rgb, p): | |
""" | |
Will darken an rgb value by p percent | |
""" | |
assert 0 <= p <= 1, "Proportion must be [0, 1]" | |
return [int(x * (1 - p)) for x in rgb] | |
def lighten_rgb(rgb, p): | |
""" | |
Will lighten an rgb value by p percent | |
""" | |
assert 0 <= p <= 1, "Proportion must be [0, 1]" | |
return [int((255 - x) * p + x) for x in rgb] | |
def is_luminous(rgb): | |
new_color = [] | |
for c in rgb: | |
if c <= 0.03928: | |
new_color.append(c / 12.92) | |
else: | |
new_color.append(((c + 0.055) / 1.055) ** 2.4) | |
L = sum([x * y for x, y in zip([0.2126, 0.7152, 0.0722], new_color)]) | |
return True if L < 0.179 else False | |
def kmeans_plot(X, y, cluster_centers, ax=None): | |
import matplotlib.patheffects as path_effects | |
from sklearn.metrics.pairwise import pairwise_distances_argmin_min | |
if ax is None: | |
ax = plt.gca() | |
colors = cm.spectral(y.astype(float) / len(cluster_centers)) | |
ax.scatter(*list(zip(*X)), lw=0, c=colors, s=30) | |
offset = max(list(zip(*cluster_centers))[0]) * 0.2 | |
for i, cluster in enumerate(cluster_centers): | |
index, _ = pairwise_distances_argmin_min(cluster.reshape(1, -1), Y=X) | |
cluster_color = colorConverter.to_rgb(colors[index[0]]) | |
if is_luminous(cluster_color) is False: | |
cluster_color = darken_rgb(cluster_color, 0.35) | |
label = ax.text(x=cluster[0] + offset, | |
y=cluster[1], | |
s='{:d}'.format(i + 1), | |
color=cluster_color) | |
label.set_path_effects([path_effects.Stroke(lw=2, foreground='white'), | |
path_effects.Normal()]) | |
limit = max(*ax.get_xlim(), *ax.get_xlim()) | |
ax.set_xlim(0, limit) | |
ax.set_ylim(0, limit) | |
ax.set_xlabel("Feature space for the 1st feature") | |
ax.set_ylabel("Feature space for the 2nd feature") | |
return ax | |
def silhouette_plot(X, y, n_clusters, ax=None): | |
from sklearn.metrics import silhouette_samples, silhouette_score | |
if ax is None: | |
ax = plt.gca() | |
# Compute the silhouette scores for each sample | |
silhouette_avg = silhouette_score(X, y) | |
sample_silhouette_values = silhouette_samples(X, y) | |
y_lower = padding = 2 | |
for i in range(n_clusters): | |
# Aggregate the silhouette scores for samples belonging to | |
ith_cluster_silhouette_values = sample_silhouette_values[y == i] | |
ith_cluster_silhouette_values.sort() | |
size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
y_upper = y_lower + size_cluster_i | |
color = cm.spectral(float(i) / n_clusters) | |
ax.fill_betweenx(np.arange(y_lower, y_upper), | |
0, | |
ith_cluster_silhouette_values, | |
facecolor=color, | |
edgecolor=color, | |
alpha=0.7) | |
# Label the silhouette plots with their cluster numbers at the middle | |
ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i + 1)) | |
# Compute the new y_lower for next plot | |
y_lower = y_upper + padding | |
ax.set_xlabel("The silhouette coefficient values") | |
ax.set_ylabel("Cluster label") | |
# The vertical line for average silhoutte score of all the values | |
ax.axvline(x=silhouette_avg, c='r', alpha=0.8, lw=0.8, ls='-') | |
ax.annotate('Average', | |
xytext=(silhouette_avg, y_lower * 1.025), | |
xy=(0, 0), | |
ha='center', | |
alpha=0.8, | |
c='r') | |
ax.set_yticks([]) # Clear the yaxis labels / ticks | |
ax.set_xticks([0, 0.2, 0.4, 0.6, 0.8, 1]) | |
ax.set_ylim(0, y_upper + 1) | |
ax.set_xlim(-0.075, 1.0) | |
return ax |
same issue here.
Ha, I've not seen these comments until now. Have you tried removing the lw=0
call to ax.scatter
? Right here: https://gist.github.com/clintval/e9afc246e77f6488cda79f86e4d37148#file-kmeansplots-py-L47
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi,
I continuously get error running this code: